Advertisement

Foundations of Physics

, Volume 43, Issue 1, pp 140–155 | Cite as

The Gauge-String Duality and Heavy Ion Collisions

  • Steven S. GubserEmail author
Article

Abstract

I review at a non-technical level the use of the gauge-string duality to study aspects of heavy ion collisions, with special emphasis on the trailing string calculation of heavy quark energy loss. I include some brief speculations on how variants of the trailing string construction could provide a toy model of black hole formation and evaporation. This essay is an invited contribution to “Forty Years of String Theory” and is aimed at philosophers and historians of science as well as physicists.

Keywords

Gauge-string duality Heavy ion collisions String theory 

References

  1. 1.
    Ellis, J.: The superstring: theory of everything, or of nothing? Nature 323, 595–598 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    Kaku, M.: Parallel Worlds: A Journey Through Creation, Higher Dimensions, and the Future of the Cosmos. Doubleday, New York (2005) Google Scholar
  3. 3.
    Dine, M., Seiberg, N.: Are (0, 2) models string miracles? Nucl. Phys. B 306, 137–159 (1988) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Lemonick, M.: Edward Witten. Time Mag. (April, 2004) Google Scholar
  5. 5.
    Woit, P.: Not Even Wrong: The Failure of String Theory, the Continuing Challenge to Unify the Laws of Physics. Basic Books, New York (2006) Google Scholar
  6. 6.
    Smolin, L.: The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next. Houghton Mifflin, Boston (2006) zbMATHGoogle Scholar
  7. 7.
    The Nobel Prize and after: a talk with Frank Wilczek. http://www.edge.org/3rd_culture/wilczek09/wilczek09_index.html
  8. 8.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). hep-th/9711200 MathSciNetADSzbMATHGoogle Scholar
  9. 9.
    Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998). hep-th/9802109 MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). hep-th/9802150 MathSciNetADSzbMATHGoogle Scholar
  11. 11.
    Townsend, P.: The eleven-dimensional supermembrane revisited. Phys. Lett. B 350, 184–187 (1995). hep-th/9501068 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B 443, 85–126 (1995). hep-th/9503124 MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99–104 (1996). hep-th/9601029 MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Polchinski, J.: Dirichlet-branes and Ramond-Ramond charges. Phys. Rev. Lett. 75, 4724–4727 (1995). hep-th/9510017 MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Das, S.R., Mathur, S.D.: Comparing decay rates for black holes and D-branes. Nucl. Phys. B 478, 561–576 (1996). hep-th/9606185 MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    ’t Hooft, G.: Dimensional reduction in quantum gravity. gr-qc/9310026. Essay dedicated to Abdus Salam
  17. 17.
    Susskind, L.: The World as a hologram. J. Math. Phys. 36, 6377–6396 (1995). hep-th/9409089 MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Thorne, K.S., Price, R., Macdonald, D. (eds.): Black Holes: the Membrane Paradigm. Yale University Press, New York (1986) Google Scholar
  19. 19.
    Policastro, G., Son, D.T., Starinets, A.O.: The shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 87, 081601 (2001). hep-th/0104066 ADSCrossRefGoogle Scholar
  20. 20.
    Damour, T.: Surface effects in black-hole physics. In: Ruffini, R. (ed.) Proceedings of the Second Marcel Grossmann Meeting on General Relativity, p. 587. North-Holland, Amsterdam (1982) Google Scholar
  21. 21.
    Butler, S.: High-energy physics made painless. Fermi News 20, 5 (1997) Google Scholar
  22. 22.
    Adcox, K., et al. (PHENIX Collaboration): Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005). nucl-ex/0410003 ADSCrossRefGoogle Scholar
  23. 23.
    Arsene, I., et al. (BRAHMS Collaboration): Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1–27 (2005). nucl-ex/0410020 ADSCrossRefGoogle Scholar
  24. 24.
    Back, B.B., et al.: The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 757, 28–101 (2005). nucl-ex/0410022 ADSCrossRefGoogle Scholar
  25. 25.
    Adams, J., et al. (STAR Collaboration): Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). nucl-ex/0501009 ADSCrossRefGoogle Scholar
  26. 26.
    Abreu, S., et al.: Heavy ion collisions at the LHC—last call for predictions. J. Phys. G 35, 054001 (2008). 0711.0974. Edited by N. Armesto, N. Borghini, S. Jeon, and U.A. Wiedemann MathSciNetCrossRefGoogle Scholar
  27. 27.
    McLerran, L.: The color glass condensate and glasma. 0804.1736
  28. 28.
    Gelis, F., Iancu, E., Jalilian-Marian, J., Venugopalan, R.: The color glass condensate. 1002.0333
  29. 29.
    Heinz, U.W.: Concepts of heavy-ion physics. hep-ph/0407360
  30. 30.
    Bohr, N., Wheeler, J.A.: The mechanism of nuclear fission. Phys. Rev. 56, 426–450 (1939) ADSCrossRefGoogle Scholar
  31. 31.
    Adare, A., et al. (PHENIX Collaboration): Detailed measurement of the e + e pair continuum in p+p and Au+Au collisions at \(\sqrt{s_{NN}} = 200~\mathrm{GeV}\) and implications for direct photon production. Phys. Rev. C 81, 034911 (2010). 0912.0244 ADSCrossRefGoogle Scholar
  32. 32.
    Gubser, S.S., Klebanov, I.R., Peet, A.W.: Entropy and temperature of black 3-branes. Phys. Rev. D 54, 3915–3919 (1996). hep-th/9602135 MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Luzum, M., Romatschke, P.: Conformal relativistic viscous hydrodynamics: applications to RHIC results at \(\sqrt{s_{NN}} = 200~\mathrm{GeV}\). Phys. Rev. C 78, 034915 (2008). 0804.4015 ADSCrossRefGoogle Scholar
  34. 34.
    Arnold, P.B., Moore, G.D., Yaffe, L.G.: Transport coefficients in high temperature gauge theories: (I) Leading-log results. J. High Energy Phys. 11, 001 (2000). hep-ph/0010177 ADSCrossRefGoogle Scholar
  35. 35.
    Kovtun, P., Son, D.T., Starinets, A.O.: Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). hep-th/0405231 ADSCrossRefGoogle Scholar
  36. 36.
    Casalderrey-Solana, J., Salgado, C.A.: Introductory lectures on jet quenching in heavy ion collisions. Acta Phys. Pol. B 38, 3731–3794 (2007). 0712.3443 ADSGoogle Scholar
  37. 37.
    Liu, H., Rajagopal, K., Wiedemann, U.A.: Calculating the jet quenching parameter from AdS/CFT. Phys. Rev. Lett. 97, 182301 (2006). hep-ph/0605178 ADSCrossRefGoogle Scholar
  38. 38.
    Herzog, C.P., Karch, A., Kovtun, P., Kozcaz, C., Yaffe, L.G.: Energy loss of a heavy quark moving through N=4 supersymmetric Yang-Mills plasma. J. High Energy Phys. 07, 013 (2006). hep-th/0605158 MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Casalderrey-Solana, J., Teaney, D.: Heavy quark diffusion in strongly coupled \({\mathcal{N}} = 4\) Yang-Mills. Phys. Rev. D 74, 085012 (2006). hep-ph/0605199 ADSCrossRefGoogle Scholar
  40. 40.
    Gubser, S.S.: Drag force in AdS/CFT. Phys. Rev. D 74, 126005 (2006). hep-th/0605182 MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Akamatsu, Y., Hatsuda, T., Hirano, T.: Heavy quark diffusion with relativistic Langevin dynamics in the quark-gluon fluid. Phys. Rev. C 79, 054907 (2009). 0809.1499 ADSCrossRefGoogle Scholar
  42. 42.
    Gubser, S.S., Yarom, A.: Pointlike probes of superstring-theoretic superfluids. J. High Energy Phys. 1003, 041 (2010). 0908.1392 MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Rey, S.-J., Yee, J.-T.: Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity. Eur. Phys. J. C 22, 379–394 (2001). hep-th/9803001 MathSciNetADSzbMATHCrossRefGoogle Scholar
  44. 44.
    Maldacena, J.M.: Wilson loops in large N field theories. Phys. Rev. Lett. 80, 4859–4862 (1998). hep-th/9803002 MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Karsch, F.: Properties of the quark gluon plasma: a lattice perspective. Nucl. Phys. A 783, 13–22 (2007). hep-ph/0610024 ADSCrossRefGoogle Scholar
  46. 46.
    Gubser, S.S.: Comparing the drag force on heavy quarks in N=4 super-Yang-Mills theory and QCD. Phys. Rev. D 76, 126003 (2007). hep-th/0611272 ADSCrossRefGoogle Scholar
  47. 47.
    Meyer, H.B.: A calculation of the shear viscosity in SU(3) gluodynamics. Phys. Rev. D 76, 101701 (2007). 0704.1801 ADSCrossRefGoogle Scholar
  48. 48.
    Gubser, S.S.: Momentum fluctuations of heavy quarks in the gauge-string duality. Nucl. Phys. B 790, 175–199 (2008). hep-th/0612143 MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. 49.
    Casalderrey-Solana, J., Teaney, D.: Transverse momentum broadening of a fast quark in a N=4 Yang-Mills plasma. hep-th/0701123
  50. 50.
    Gubser, S.S., Herzog, C.P., Pufu, S.S., Tesileanu, T.: Superconductors from superstrings. Phys. Rev. Lett. 103, 141601 (2009). 0907.3510 MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Gubser, S.S., Karch, A.: From gauge-string duality to strong interactions: a pedestrian’s guide. Annu. Rev. Nucl. Part. Sci. 59, 145–168 (2009). 0901.0935 ADSCrossRefGoogle Scholar
  52. 52.
    Casalderrey-Solana, J., Liu, H., Mateos, D., Rajagopal, K., Wiedemann, U.A.: Gauge/string duality, hot QCD and heavy ion collisions. 1101.0618
  53. 53.
    Chesler, P.M., Yaffe, L.G.: Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime. Phys. Rev. Lett. 106, 021601 (2011). 1011.3562 ADSCrossRefGoogle Scholar
  54. 54.
    Gubser, S.S.: Symmetry constraints on generalizations of Bjorken flow. Phys. Rev. D 82, 085027 (2010). 1006.0006 MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    Gubser, S.S., Yarom, A.: Conformal hydrodynamics in Minkowski and de Sitter spacetimes. Nucl. Phys. B 846, 469–511 (2011). 1012.1314 MathSciNetADSzbMATHCrossRefGoogle Scholar
  56. 56.
    Gubser, S.S.: Conformal symmetry and the Balitsky-Kovchegov equation. 1102.4040

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonUSA

Personalised recommendations