Advertisement

Foundations of Physics

, Volume 43, Issue 1, pp 115–139 | Cite as

Is String Theory a Theory of Quantum Gravity?

  • Steven B. GiddingsEmail author
Article

Abstract

Some problems in finding a complete quantum theory incorporating gravity are discussed. One is that of giving a consistent unitary description of high-energy scattering. Another is that of giving a consistent quantum description of cosmology, with appropriate observables. While string theory addresses some problems of quantum gravity, its ability to resolve these remains unclear. Answers may require new mechanisms and constructs, whether within string theory, or in another framework.

Keywords

String theory Quantum gravity Ultraplanckian scattering Unitarity S-matrix Black holes Information paradox Cosmology Local observables Locality Locality bound 

Notes

Acknowledgements

This work was supported in part by the Department of Energy under Contract DE-FG02-91ER40618. I thank G. Horowitz and D. Marolf for comments on a draft of part of this paper, and M. Gary and J. Polchinski for useful discussions.

References

  1. 1.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)] MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Bousso, R., Freivogel, B., Leichenauer, S., Rosenhaus, V.: Eternal inflation predicts that time will end. arXiv:1009.4698 [hep-th]
  4. 4.
    Horowitz, G.T.: Surprising connections between general relativity and condensed matter. arXiv:1010.2784 [gr-qc]
  5. 5.
    Giddings, S.B.: The gravitational S-matrix: Erice lectures. arXiv:1105.2036 [hep-th]
  6. 6.
    Weinberg, S.: Infrared photons and gravitons. Phys. Rev. B 140, 516 (1965) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Donoghue, J.F., Torma, T.: Infrared behavior of graviton-graviton scattering. Phys. Rev. D 60, 024003 (1999). hep-th/9901156 ADSCrossRefGoogle Scholar
  8. 8.
    ’t Hooft, G.: Graviton Dominance in Ultrahigh-Energy Scattering. Phys. Lett. B 198, 61–63 (1987) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Amati, D., Ciafaloni, M., Veneziano, G.: Classical and quantum gravity effects from Planckian energy superstring collisions. Int. J. Mod. Phys. A 3, 1615–1661 (1988) ADSCrossRefGoogle Scholar
  10. 10.
    Amati, D., Ciafaloni, M., Veneziano, G.: Can space-time be probed below the string size? Phys. Lett. B 216, 41 (1989) ADSCrossRefGoogle Scholar
  11. 11.
    Amati, D., Ciafaloni, M., Veneziano, G.: Higher order gravitational deflection and soft Bremsstrahlung in planckian energy superstring collisions. Nucl. Phys. B 347, 550 (1990) ADSCrossRefGoogle Scholar
  12. 12.
    Amati, D., Ciafaloni, M., Veneziano, G.: Effective action and all order gravitational eikonal at Planckian energies. Nucl. Phys. B 403, 707 (1993) ADSCrossRefGoogle Scholar
  13. 13.
    Banks, T., Fischler, W.: A Model for high-energy scattering in quantum gravity. hep-th/9906038
  14. 14.
    Muzinich, I.J., Soldate, M.: High-energy unitarity of gravitation and strings. Phys. Rev. D 37, 359 (1988) ADSCrossRefGoogle Scholar
  15. 15.
    Verlinde, H.L., Verlinde, E.P.: Scattering at Planckian energies. Nucl. Phys. B 371, 246 (1992). arXiv:hep-th/9110017 MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Kabat, D., Ortiz, M.: Eikonal quantum gravity and Planckian scattering. Nucl. Phys. B 388, 570 (1992). arXiv:hep-th/9203082 ADSCrossRefGoogle Scholar
  17. 17.
    Giddings, S.B.: Locality in quantum gravity and string theory. Phys. Rev. D 74, 106006 (2006). arXiv:hep-th/0604072 MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Giddings, S.B., Gross, D.J., Maharana, A.: Gravitational effects in ultrahigh-energy string scattering. Phys. Rev. D 77, 046001 (2008). arXiv:0705.1816 [hep-th] ADSCrossRefGoogle Scholar
  19. 19.
    Giddings, S.B., Srednicki, M.: High-energy gravitational scattering and black hole resonances. Phys. Rev. D 77, 085025 (2008). arXiv:0711.5012 [hep-th] ADSCrossRefGoogle Scholar
  20. 20.
    Giddings, S.B., Schmidt-Sommerfeld, M., Andersen, J.R.: High energy scattering in gravity and supergravity. Phys. Rev. D 82, 104022 (2010). arXiv:1005.5408 [hep-th] ADSCrossRefGoogle Scholar
  21. 21.
    Bern, Z., Dixon, L.J., Roiban, R.: Is N = 8 supergravity ultraviolet finite? Phys. Lett. B 644, 265 (2007). arXiv:hep-th/0611086 MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Eardley, D.M., Giddings, S.B.: Classical black hole production in high-energy collisions. Phys. Rev. D 66, 044011 (2002). arXiv:gr-qc/0201034 MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Giddings, S.B., Porto, R.A.: The gravitational S-matrix. Phys. Rev. D 81, 025002 (2010). arXiv:0908.0004 [hep-th] ADSCrossRefGoogle Scholar
  24. 24.
    Duff, M.J.: Covariant gauges and point sources in general relativity. Ann. Phys. 79, 261 (1973) ADSCrossRefGoogle Scholar
  25. 25.
    Duff, M.J.: Quantum tree graphs and the Schwarzschild solution. Phys. Rev. D 7, 2317 (1973) ADSCrossRefGoogle Scholar
  26. 26.
    Aichelburg, P.C., Sexl, R.U.: On the Gravitational field of a massless particle. Gen. Relativ. Gravit. 2, 303 (1971) ADSCrossRefGoogle Scholar
  27. 27.
    Choptuik, M.W., Pretorius, F.: Ultra relativistic particle collisions. Phys. Rev. Lett. 104, 111101 (2010). arXiv:0908.1780 [gr-qc] ADSCrossRefGoogle Scholar
  28. 28.
    Amati, D., Ciafaloni, M., Veneziano, G.: Towards an S-matrix description of gravitational collapse. J. High Energy Phys. 0802, 049 (2008). arXiv:0712.1209 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Callan, C.G. Jr., Giddings, S.B., Harvey, J.A., et al.: Evanescent black holes. Phys. Rev. D 45, 1005–1009 (1992) hep-th/9111056 MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Giddings, S.B., Nelson, W.M.: Quantum emission from two-dimensional black holes. Phys. Rev. D 46, 2486 (1992). arXiv:hep-th/9204072 MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Strominger, A.: Les Houches lectures on black holes. arXiv:hep-th/9501071
  32. 32.
    Giddings, S.B.: Quantum mechanics of black holes. arXiv:hep-th/9412138
  33. 33.
    Giddings, S.B.: The black hole information paradox. arXiv:hep-th/9508151
  34. 34.
    Lowe, D.A., Polchinski, J., Susskind, L., Thorlacius, L., Uglum, J.: Black hole complementarity versus locality. Phys. Rev. D 52, 6997 (1995). arXiv:hep-th/9506138 MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Giddings, S.B.: Nonlocality versus complementarity: A Conservative approach to the information problem. Class. Quantum Gravity 28, 025002 (2011). arXiv:0911.3395 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Banks, T., Susskind, L., Peskin, M.E.: Difficulties for the evolution of pure states into mixed states. Nucl. Phys. B 244, 125 (1984) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Susskind, L.: Trouble for remnants. arXiv:hep-th/9501106
  38. 38.
    Giddings, S.B.: Why aren’t black holes infinitely produced? Phys. Rev. D 51, 6860 (1995). arXiv:hep-th/9412159 MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Page, D.N.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743 (1993). arXiv:hep-th/9306083 MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Veneziano, G.: String-theoretic unitary S-matrix at the threshold of black-hole production. J. High Energy Phys. 0411, 001 (2004). hep-th/0410166 MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    ’t Hooft, G.: Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026
  42. 42.
    Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995). arXiv:hep-th/9409089 MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    Giddings, S.B.: Flat-space scattering and bulk locality in the AdS/CFT correspondence. Phys. Rev. D 61, 106008 (2000). arXiv:hep-th/9907129 MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Giddings, S.B.: The boundary S-matrix and the AdS to CFT dictionary. Phys. Rev. Lett. 83, 2707 (1999). arXiv:hep-th/9903048 MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. 45.
    Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rep. 323, 183 (2000). arXiv:hep-th/9905111 MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Fitzpatrick, A.L., Katz, E., Poland, D., Simmons-Duffin, D.: Effective conformal theory and the flat-space limit of AdS. arXiv:1007.2412 [hep-th]
  47. 47.
    Polchinski, J.: S-matrices from AdS spacetime. arXiv:hep-th/9901076
  48. 48.
    Susskind, L.: Holography in the flat space limit. arXiv:hep-th/9901079
  49. 49.
    Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109 MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150 MathSciNetADSzbMATHGoogle Scholar
  51. 51.
    Gary, M., Giddings, S.B., Penedones, J.: Local bulk S-matrix elements and CFT singularities. Phys. Rev. D 80, 085005 (2009). arXiv:0903.4437 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Gary, M., Giddings, S.B.: The flat space S-matrix from the AdS/CFT correspondence? Phys. Rev. D 80, 046008 (2009). arXiv:0904.3544 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Reed, M., Simon, B.: Methods of Mathematical Physics. Scattering Theory, Vol. 3. Academic Press, New York (1979). 463p. zbMATHGoogle Scholar
  54. 54.
    Marolf, D.: Unitarity and Holography in Gravitational Physics. Phys. Rev. D 79, 044010 (2009). arXiv:0808.2842 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    Heemskerk, I., Penedones, J., Polchinski, J., Sully, J.: Holography from conformal field theory. J. High Energy Phys. 0910, 079 (2009). arXiv:0907.0151 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    Gary, M., Giddings, S.B.: to appear Google Scholar
  57. 57.
    Giddings, S.B., Marolf, D., Hartle, J.B.: Observables in effective gravity. Phys. Rev. D 74, 064018 (2006). arXiv:hep-th/0512200 MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Gary, M., Giddings, S.B.: Relational observables in 2d quantum gravity. Phys. Rev. D 75, 104007 (2007). arXiv:hep-th/0612191 MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Veneziano, G.: A stringy nature needs just two constants. Europhys. Lett. 2, 199 (1986) ADSCrossRefGoogle Scholar
  60. 60.
    Gross, D.J.: Superstrings and unification. PUPT-1108 Plenary Session talk given at 24th Int. Conf. on High Energy Physics, Munich, West Germany, Aug 4–10, 1988 Google Scholar
  61. 61.
    Giddings, S.B., Lippert, M.: Precursors, black holes, and a locality bound. Phys. Rev. D 65, 024006 (2002). arXiv:hep-th/0103231 MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    Giddings, S.B., Lippert, M.: The information paradox and the locality bound. Phys. Rev. D 69, 124019 (2004). arXiv:hep-th/0402073 MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    Giddings, S.B.: Black hole information, unitarity, and nonlocality. Phys. Rev. D 74, 106005 (2006). arXiv:hep-th/0605196 MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    Giddings, S.B.: (Non)perturbative gravity, nonlocality, and nice slices. Phys. Rev. D 74, 106009 (2006). arXiv:hep-th/0606146 MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    Giddings, S.B., Marolf, D.: A Global picture of quantum de Sitter space. Phys. Rev. D 76, 064023 (2007). arXiv:0705.1178 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    Giddings, S.B.: Quantization in black hole backgrounds. Phys. Rev. D 76, 064027 (2007). arXiv:hep-th/0703116 MathSciNetADSCrossRefGoogle Scholar
  67. 67.
    Giddings, S.B., Sloth, M.S.: Semiclassical relations and IR effects in de Sitter and slow-roll space-times. J. Cosmol. Astropart. Phys. 1101, 023 (2011). arXiv:1005.1056 [hep-th] ADSCrossRefGoogle Scholar
  68. 68.
    Susskind, L., Thorlacius, L., Uglum, J.: The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993). arXiv:hep-th/9306069 MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    Sekino, Y., Susskind, L.: Fast scramblers. J. High Energy Phys. 0810, 065 (2008). arXiv:0808.2096 [hep-th] ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations