Advertisement

Foundations of Physics

, Volume 42, Issue 2, pp 284–290 | Cite as

Mechanics: Non-classical, Non-quantum

  • Elliott Tammaro
Article

Abstract

A non-classical, non-quantum theory, or NCQ, is any fully consistent theory that differs fundamentally from both the corresponding classical and quantum theories, while exhibiting certain features common to both. Such theories are of interest for two primary reasons. Firstly, NCQs arise prominently in semi-classical approximation schemes. Their formal study may yield improved approximation techniques in the near-classical regime. More importantly for the purposes of this note, it may be possible for NCQs to reproduce quantum results over experimentally tested regimes while having a well defined classical limit, and hence are viable alternative theories. We illustrate an NCQ by considering an explicit class of NCQ mechanics. Here this class will be arrived at via a natural generalization of classical mechanics formulated in terms of a probability density functional.

Keywords

Classical mechanics Quantum mechanics Probability density functional Stochastic process 

References

  1. 1.
    Tobar, M.E., et al.: Phys. Rev. D 81, 022003 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    Pavlopoulos, T.G.: Phys. Lett. B 625, 13–18 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    Pavlopoulos, T.G.: Phys. Rev. D 71, 025004 (2005) CrossRefGoogle Scholar
  4. 4.
    Muller, H.: Phys. Rev. Lett. 100, 031101 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    Lipa, J.A., et al.: Phys. Rev. Lett. 90, 060403 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    Wolf, P., et al.: Phys. Rev. D 70, 051902 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    Antonini, P., et al.: Phys. Rev. A 71, 050101 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    Tobar, M.E., Wolf, P., Stanwix, P.L.: Phys. Rev. A 72, 066101 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    Antonini, P., et al.: Phys. Rev. A 72, 066102 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    Stanwix, P.L., et al.: Phys. Rev. Lett. 95, 040404 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    Herrmann, S., et al.: Phys. Rev. Lett. 95, 150401 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    Stanwix, P.L., et al.: Phys. Rev. D 74, 081101 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    Muller, H., et al.: Phys. Rev. Lett. 99, 050401 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    Cardone, F., Mignani, R., Scrimaglio, R.: Found. Phys. 36(2), 263–290 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    Saathoff, G., et al.: Phys. Rev. Lett. 91, 190403 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    Tobar, M.E., et al.: Phys. Rev. D 71, 025004 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    Hohensee, M., et al.: Phys. Rev. D 75, 049902 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    Reinhardt, S., et al.: Nat. Phys. 3, 861 (2007) CrossRefGoogle Scholar
  19. 19.
    Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, New York (1993) MATHCrossRefGoogle Scholar
  20. 20.
    Robertson, H.P.: Rev. Mod. Phys. 21, 378 (1949) ADSMATHCrossRefGoogle Scholar
  21. 21.
    Mansouri, R., Sexl, R.U.: Gen. Relativ. Gravit. 8, 497 (1977) ADSCrossRefGoogle Scholar
  22. 22.
    Sidharth, B.G.: Found. Phys. 38, 89–95 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Sidharth, B.G.: Int. J. Theor. Phys. 43(9), 1 (2004) CrossRefGoogle Scholar
  24. 24.
    Peskin, M., Schroeder, D.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995) Google Scholar
  25. 25.
    Feynman, R., Hibbs, A.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965) MATHGoogle Scholar
  26. 26.
    Gozzi, E.: Phys. Lett. B 201, 525 (1988) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley, Reading (1994) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Bryn Mawr CollegeBryn MawrUSA

Personalised recommendations