Skip to main content
Log in

Conformally Flat Spacetimes and Weyl Frames

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We discuss the concepts of Weyl and Riemann frames in the context of metric theories of gravity and state the fact that they are completely equivalent as far as geodesic motion is concerned. We apply this result to conformally flat spacetimes and show that a new picture arises when a Riemannian spacetime is taken by means of geometrical gauge transformations into a Minkowskian flat spacetime. We find out that in the Weyl frame gravity is described by a scalar field. We give some examples of how conformally flat spacetime configurations look when viewed from the standpoint of a Weyl frame. We show that in the non-relativistic and weak field regime the Weyl scalar field may be identified with the Newtonian gravitational potential. We suggest an equation for the scalar field by varying the Einstein-Hilbert action restricted to the class of conformally-flat spacetimes. We revisit Einstein and Fokker’s interpretation of Nordström scalar gravity theory and draw an analogy between this approach and the Weyl gauge formalism. We briefly take a look at two-dimensional gravity as viewed in the Weyl frame and address the question of quantizing a conformally flat spacetime by going to the Weyl frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Einstein, A., Infeld, L., Hoffmann, B.: Ann. Math. 39(2), 65 (1938)

    Article  MathSciNet  Google Scholar 

  2. Will, C.M.: Theory and Experiment in Gravitation Physics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  3. Weyl, H.: Sitzungsber. Preuss. Akad. Wiss. 465 (1918)

  4. Weyl, H.: Space, Time, Matter. Dover, New York (1952)

    Google Scholar 

  5. Adler, R., Bazin, M., Schiffer, M.: Introduction to General Relativity. McGraw-Hill, New York (1975). Chap. 15

    Google Scholar 

  6. Pauli, W.: Theory of Relativity. Dover, New York (1981)

    Google Scholar 

  7. O’Raiefeartaigh, L., Straumann, N.: Rev. Mod. Phys. 72, 1 (2000)

    Article  ADS  Google Scholar 

  8. Perlick, V.: Class. Quantum Gravity 8, 1369 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Novello, M., Heintzmann, H.: Phys. Lett. A 98, 10 (1983)

    Article  ADS  Google Scholar 

  10. Novello, M., Oliveira, L.A.R., Salim, J.M., Elbas, E.: Int. J. Mod. Phys. D 1, 641–677 (1993)

    Article  ADS  Google Scholar 

  11. Salim, J.M., Sautú, S.L.: Class. Quantum Gravity 13, 353 (1996)

    Article  ADS  MATH  Google Scholar 

  12. de Oliveira, H.P., Salim, J.M., Sautú, S.L.: Class. Quantum Gravity 14, 2833 (1997)

    Article  ADS  MATH  Google Scholar 

  13. Melnikov, V.: Classical solutions in multidimensional cosmology. In: Novello, M. (ed.) Proceedings of the VIII Brazilian School of Cosmology and Gravitation II (Editions Frontières), pp. 542–560 (1995). ISBN 2-86332-192-7

    Google Scholar 

  14. Bronnikov, K.A., Konstantinov, M.Yu., Melnikov, V.N.: Gravit. Cosmol. 1, 60 (1995)

    ADS  MATH  Google Scholar 

  15. Arias, O., Cardenas, R., Quiros, I.: Nucl. Phys. B 643, 187 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Miritzis, J.: Class. Quantum Gravity 21, 3043 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Miritzis, J.: J. Phys. Conf. Ser. 8, 131 (2005)

    Article  ADS  Google Scholar 

  18. Israelit, M.: Found. Phys. 35, 1725 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Dahia, F., Gomez, G.A.T., Romero, C.: J. Math. Phys. 49, 102501 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  20. Madriz Aguilar, J.E., Romero, C.: Found. Phys. 39, 1205 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Ehlers, J., Pirani, F., Schild, A.: General Relativity. Oxford University Press, London (1972). L.O. Raifeartaigh (ed.)

    Google Scholar 

  22. Audretsch, J.: Phys. Rev. D 27, 2872 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  23. Audretsch, J., Gäller, F., Straumann, N.: Commun. Math. Phys. 95, 41 (1984)

    Article  ADS  MATH  Google Scholar 

  24. Infeld, L., Schild, A.: Phys. Rev. 68, 250 (1945)

    Article  MathSciNet  ADS  Google Scholar 

  25. Narlikar, J., Arp, H.: Astrophys. J. 405, 51 (1992)

    Article  ADS  Google Scholar 

  26. Ibison, M.: J. Math. Phys. 48, 122501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  27. Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. Chapmann & Hall, London (2004)

    MATH  Google Scholar 

  28. Matsuno, I.: J. Math. Phys. 28, 2317 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Nordström, G.: Phys. Z. 13, 1126 (1912)

    Google Scholar 

  30. Nordström, G.: Ann. Phys. 40, 856 (1913)

    Article  MATH  Google Scholar 

  31. Nordström, G.: Ann. Phys. 42, 533 (1913)

    Article  MATH  Google Scholar 

  32. Whithrow, J.G., Murdoch, G.E.: Relativistic theories of gravitation. In: Beer, A. (ed.) Vistas in Astronomy, vol. 6, p. 1. Pergamon, Oxford (1965)

    Google Scholar 

  33. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973). Chap. 17

    Google Scholar 

  34. Einstein, A., Fokker, A.D.: Ann. Phys. 44, 321 (1914)

    Article  MATH  Google Scholar 

  35. Brown, J.D.: Lower Dimensional Gravity. World Scientific, Singapore (1988)

    Google Scholar 

  36. Sikkema, A.E., Mann, R.B.: Class. Quantum Gravity 8, 219 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)

    MATH  Google Scholar 

  38. Faraoni, V., Gunzig, E., Nardone, P.: Fundam. Cosm. Phys. 20, 121 (1999)

    ADS  Google Scholar 

  39. Faraoni, V., Nadeau, S.: Phys. Rev. D 75, 023501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  40. Faraoni, V.: Cosmology in Scalar-Tensor Gravity. Kluwer Academic, Dordrecht (2004). Chap. 2

    MATH  Google Scholar 

  41. Fujii, Y., Maeda, K.: The Scalar-Tensor of Gravitation. Cambridge University Press, Cambridge (2003). Chap. 1

    MATH  Google Scholar 

  42. Green, M.B., Schwarz, J., Witten, E.: Superstring Theory, vol. 1. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  43. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  44. Kiefer, C.: Quantum Gravity, 2nd edn. Oxford University Press, London (2007)

    Book  MATH  Google Scholar 

  45. Feynmann, R.P., Morinigo, F.B., Wagner, W.G.: Feynman Lectures on Gravitation. Addison-Wesley, Reading (1995)

    Google Scholar 

  46. Padmanabhan, T.: In: Iyer, B.R., Kembhavi, A.K., Narlikar, J.V., Vishveshwara, C.V. (eds.) Highlights in Gravitation and Cosmology, Proceedings, Goa, India, pp. 156–165. Cambridge University Press, Cambridge (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, C., Fonseca-Neto, J.B. & Pucheu, M.L. Conformally Flat Spacetimes and Weyl Frames. Found Phys 42, 224–240 (2012). https://doi.org/10.1007/s10701-011-9593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9593-9

Keywords

Navigation