Foundations of Physics

, Volume 43, Issue 1, pp 81–100 | Cite as

Theory Assessment and Final Theory Claim in String Theory

  • Richard DawidEmail author


String theory has by now maintained a highly influential position in high energy physics for more than a quarter of a century. The present article analyses the reasons for the considerable trust exponents of string theory have in their theory even though it has neither found empirical confirmation nor a complete formulation up to this point. It is argued that this trust can be understood in terms of an emerging new conception of theory assessment that relies strongly on the identification of limitations to the underdetermination of scientific theory building. The second part of the paper makes the point that another conspicuous element of string theoretical reasoning, the prominent role of the notion of a final theory, can be understood in terms of this altered notion of theory assessment as well.


String theory Underdetermination Final theory claim 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlip, S.: Black hole entropy and the problem of universality (2008). arXiv:0807.4192
  2. 2.
    Chalmers, D.: The Conscious Mind: In Search of a Fundamental Theory. Oxford University Press, Oxford (1996) zbMATHGoogle Scholar
  3. 3.
    Dawid, R.: Underdetermination and theory succession from the perspective of string theory. Philos. Sci. 73(3), 298–322 (2007) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dawid, R.: On the conflicting assessments of the current status of string theory. Philos. Sci. 76(5), 984–996 (2009) Google Scholar
  5. 5.
    Dawid, R., Hartmann, S.: No alternative arguments (2011a, forthcoming) Google Scholar
  6. 6.
    Dawid, R., Hartmann, S.: No alternative arguments and meta-inductive reasoning in string theory (2011b, forthcoming) Google Scholar
  7. 7.
    Dyson, F.: The Scientist as a Rebel. Review Books, New York (2008) Google Scholar
  8. 8.
    Gervais, J.L., Sakita, B.: Field theory interpretation of supergauges in dual models. Nucl. Phys. B 34, 632 (1971) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Green, M.B., Schwarz, J.H.: Anomaly cancellation in supersymmetric D=10 Gauge theory and superstring theory. Phys. Lett. B 149, 117 (1984) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Greene, B.: The Elegant Universe. W.W. Norton (1999) zbMATHGoogle Scholar
  11. 11.
    Hawking, S., Mlodinov, L.: Grand Design. Bantam Press (2010) Google Scholar
  12. 12.
    Horava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:arXiv:0901.3775 MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Kaku, M.: Beyond Einstein: Superstrings and the Quest for the Final Theory. Oxford University Press, Oxford (1997) Google Scholar
  14. 14.
    Lakatos, I.: Falsification and the methodology of scientific research programs. In: Lakatos, I., Musgrave, A. (eds.) Criticism and the Growth of Knowledge. Cambridge University Press, Cambridge (1970) Google Scholar
  15. 15.
    Polchinski, J.: String Theory, vol. 2. Cambridge University Press, Cambridge (1998) CrossRefGoogle Scholar
  16. 16.
    Polchinski, J.: Quantum gravity at the Planck length. Int. J. Mod. Phys. A 14, 2633 (1999). arXiv:hep-th/9812104 MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Penrose, R.: The Road to Reality. Vintage Books, London (2005) zbMATHGoogle Scholar
  18. 18.
    Rescher, N.: The price of an ultimate theory. Philos. Nat. 37, 1–20 (2000) Google Scholar
  19. 19.
    Rovelli, C., Smolin, L.: Loop space representation of quantum general relativity. Nucl. Phys. B 331, 80 (1990) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Smolin, L.: The Trouble with Physics. Houghton Mifflin (2006) zbMATHGoogle Scholar
  21. 21.
    Strominger, A.: Black hole entropy from near horizon microstates. J. High Energy Phys. 9802, 009 (1998). arXiv:hep-th/9712251 MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996). arXiv:hep-th/9601029 MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Susskind, L.: The anthropic landscape of string theory. In: Carr, B. (ed.) Universe or Multiverse? pp. 247–266. Cambridge University Press, Cambridge (2003). arXiv:hep-th/0302219 Google Scholar
  24. 24.
    ’t Hooft, G., Veltman, M.J.G.: Regularization and renormalisation of Gauge fields. Nucl. Phys. B 44, 189–213 (1972) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Weinberg, S.: A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967) ADSCrossRefGoogle Scholar
  26. 26.
    Weinberg, S.: Dreams of a Final Theory. Vintage (1994) Google Scholar
  27. 27.
    Witten, E.: Reflections on the Fate of Spacetime (1996). Reprinted in Callender, C., Huggett, N.: Physics Meets Philosophy at the Planck Scale, Cambridge University Press, Cambridge (2001) Google Scholar
  28. 28.
    Woit, P.: Not Even Wrong: The Failure of String Theory and the Continuing Challenge to Unify the Laws of Physics. Jonathan Cape (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of ViennaViennaAustria

Personalised recommendations