Skip to main content
Log in

Consistent Histories of Systems and Measurements in Spacetime

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Traditional interpretations of quantum theory in terms of wave function collapse are particularly unappealing when considering the universe as a whole, where there is no clean separation between classical observer and quantum system and where the description is inherently relativistic. As an alternative, the consistent histories approach provides an attractive “no collapse” interpretation of quantum physics. Consistent histories can also be linked to path-integral formulations that may be readily generalized to the relativistic case. A previous paper described how, in such a relativistic spacetime path formalism, the quantum history of the universe could be considered to be an eigenstate of the measurements made within it. However, two important topics were not addressed in detail there: a model of measurement processes in the context of quantum histories in spacetime and a justification for why the probabilities for each possible cosmological eigenstate should follow Born’s rule. The present paper addresses these topics by showing how Zurek’s concepts of einselection and envariance can be applied in the context of relativistic spacetime and quantum histories. The result is a model of systems and subsystems within the universe and their interaction with each other and their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffiths, R.B.: J. Stat. Phys. 36, 219 (1984)

    Article  ADS  MATH  Google Scholar 

  2. Omnès, R.: J. Stat. Phys. 53, 893 (1988)

    Article  ADS  MATH  Google Scholar 

  3. Gell-Mann, M., Hartle, J.: In: Zurek, W. (ed.) Complexity, Entropy and the Physics of Information. Sante Fe Institute Studies in the Science of Complexity, vol. VIII. Addison–Wesley, Reading (1990)

    Google Scholar 

  4. Griffiths, R.B.: Consistent Quantum Mechanics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  5. Feynman, R.P.: Rev. Mod. Phys. 20, 367 (1948)

    Article  MathSciNet  ADS  Google Scholar 

  6. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw–Hill, New York (1965)

    MATH  Google Scholar 

  7. Caves, C.M.: Phys. Rev. D 33, 1643 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  8. Hartle, J.B.: Phys. Rev. D 44, 3173 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  9. Hartle, J.B.: Vistas Astron. 37, 569 (1993). arXiv:gr-qc/9210004

    Article  MathSciNet  ADS  Google Scholar 

  10. Hartle, J.B.: In: Julia, B., Zinn-Justin, J. (eds.) Gravitation and Quantizations: Proceedings of the 1992 Les Houches Summer School. North-Holland, Amsterdam (1995). arXiv:gr-qc/9304006

    Google Scholar 

  11. Feynman, R.P.: Phys. Rev. 76, 749 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Feynman, R.P.: Phys. Rev. 80, 440 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Feynman, R.P.: Phys. Rev. 84, 108 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Teitelboim, C.: Phys. Rev. D 25, 3159 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  15. Hartle, J.B., Hawking, S.W.: Phys. Rev. D 28, 2960 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  16. Hartle, J.B., Kuchař, K.V.: Phys. Rev. D 34, 2323 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  17. Halliwell, J.J.: Phys. Rev. D 64, 044008 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  18. Halliwell, J.J., Thorwart, J.: Phys. Rev. D 64, 124018 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  19. Halliwell, J.J., Thorwart, J.: Phys. Rev. D 65, 104009 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. Blencowe, M.: Ann. Phys. (N. Y.) 211, 87 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  21. Isham, C.J., Linden, N., Savvidou, K., Schreckenberg, S.: J. Math. Phys. 39, 1818 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Isham, C.J., Savvidou, K.: Quantising the foliation in history quantum field theory. Tech. Rep. Imperial/TP/00-01/32, Imperial College of Science (2001). arXiv:quant-ph/0110161

  23. Griffiths, R.B.: Phys. Rev. A 66, 062101 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  24. Seidewitz, E.: Found. Phys. 37, 572 (2007). arXiv:quant-ph/0612023

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Seidewitz, E.: J. Math. Phys. 47, 112302 (2006). arXiv:quant-ph/0507115

    Article  MathSciNet  ADS  Google Scholar 

  26. Seidewitz, E.: Ann. Phys. 324, 309 (2009). arXiv:0804.3206 [quant-ph]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Kent, A.: Int. J. Mod. Phys. A 5, 1745 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  28. Squires, E.J.: Phys. Lett. A 145, 67 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  29. Zurek, W.H.: Philos. Trans. R. Soc. Lond. A 356, 1793 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  30. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Zurek, W.H.: Phys. Rev. Lett. 90, 120404 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  32. Zurek, W.H.: Phys. Rev. A 71, 052105 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  33. Zurek, W.H.: Phys. Rev. A 76, 052110 (2007). arXiv:quant-ph/0703160

    Article  ADS  Google Scholar 

  34. Zurek, W.H.: Relative states and the environment, einselection, envariance, quantum Darwinism, and the existential interpretation. Tech. Rep. LAUR 07-4568, Los Alamos National Laboratory (2007). arXiv:0707.2832 [quant-ph]

  35. Halliwell, J.J., Wallden, P.: Phys. Rev. D 73, 024011 (2006). arXiv:quant-ph/0301117

    Article  MathSciNet  ADS  Google Scholar 

  36. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison–Wesley, Reading (1995)

    Google Scholar 

  37. Weinberg, S.: The Quantum Theory of Fields. Foundations, vol. 1. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  38. Ticciati, R.: Quantum Field Theory for Mathematicians. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  39. Stueckelberg, E.C.G.: Helv. Phys. Acta 14, 588 (1941)

    MathSciNet  MATH  Google Scholar 

  40. Stueckelberg, E.C.G.: Helv. Phys. Acta 15, 23 (1942)

    MathSciNet  MATH  Google Scholar 

  41. Wichmann, E.H., Circhton, J.H.: Phys. Rev. 132, 2788 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  42. Schlosshauer, M., Fine, A.: Found. Phys. 35, 197 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Fock, V.A.: Phys. Z. Sowjetunion 12, 404 (1937)

    Google Scholar 

  44. Nambu, Y.: Prog. Theor. Phys. 5, 82 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  45. Schwinger, J.: Phys. Rev. 82, 664 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Morette, C.: Phys. Rev. 81, 848 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Cooke, J.H.: Phys. Rev. 166, 1293 (1968)

    Article  ADS  Google Scholar 

  48. Horwitz, L.P., Piron, C.: Helv. Phys. Acta 46, 316 (1973)

    Google Scholar 

  49. Collins, R.E., Fanchi, J.R.: Nuovo Cimento A 48, 314 (1978)

    Article  ADS  Google Scholar 

  50. Fanchi, J.R., Collins, R.E.: Found. Phys. 8, 851 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  51. Piron, C., Reuse, F.: Helv. Phys. Acta 51, 146 (1978)

    MathSciNet  Google Scholar 

  52. Fanchi, J.R., Wilson, W.J.: Found. Phys. 13, 571 (1983)

    Article  ADS  Google Scholar 

  53. Fanchi, J.R.: Parametrized Relativistic Quantum Theory. Kluwer Academic, Dordrecht (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed Seidewitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidewitz, E. Consistent Histories of Systems and Measurements in Spacetime. Found Phys 41, 1163–1192 (2011). https://doi.org/10.1007/s10701-011-9538-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9538-3

Keywords

Navigation