Skip to main content
Log in

Vertex Operators in 4D Quantum Gravity Formulated as CFT

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We study vertex operators in 4D conformal field theory derived from quantized gravity, whose dynamics is governed by the Wess-Zumino action by Riegert and the Weyl action. Conformal symmetry is equal to diffeomorphism symmetry in the ultraviolet limit, which mixes positive-metric and negative-metric modes of the gravitational field and thus these modes cannot be treated separately in physical operators. In this paper, we construct gravitational vertex operators such as the Ricci scalar, defined as space-time volume integrals of them are invariant under conformal transformations. Short distance singularities of these operator products are computed and it is shown that their coefficients have physically correct signs. Furthermore, we show that conformal algebra holds even in the system perturbed by the cosmological constant vertex operator as in the case of the Liouville theory shown by Curtright and Thorn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. DeWitt, B.: In: DeWitt, B., DeWitt, C. (eds.) Relativity, Groups and Topology. Gordon and Breach, New York (1964)

    Google Scholar 

  2. DeWitt, B.: Phys. Rev. 160, 1113 (1967)

    Article  MATH  ADS  Google Scholar 

  3. DeWitt, B.: Phys. Rev. 162, 1195, 1239 (1967)

    Article  ADS  Google Scholar 

  4. ’t Hooft, G., Veltman, M.: Ann. Inst. Henri Poincaré XX, 69 (1974)

    MathSciNet  Google Scholar 

  5. Veltman, M.: Methods in field theory. In: Les Houches 1975. North-Holland, Amsterdam (1976)

    Google Scholar 

  6. Weinberg, S.: In: Zichichi, A. (ed.) Understanding the Fundamental Constituents of Matter. Plenum Press, New York (1977)

    Google Scholar 

  7. Utiyama, R., DeWitt, B.: J. Math. Phys. 3, 608 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Stelle, K.: Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  9. Tomboulis, E.: Phys. Lett. B 70, 361 (1977)

    Article  ADS  Google Scholar 

  10. Fradkin, E., Tseytlin, A.: Nucl. Phys. B 201, 469 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hamada, K.: Prog. Theor. Phys. 108, 399 (2002)

    Article  MATH  ADS  Google Scholar 

  12. Hamada, K.: Found. Phys. 39, 1356 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Riegert, R.: Phys. Lett. B 134, 56 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  14. Antoniadis, I., Mottola, E.: Phys. Rev. D 45, 2013 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. Antoniadis, I., Mazur, P., Mottola, E.: Nucl. Phys. B 388, 627 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  16. Antoniadis, I., Mazur, P., Mottola, E.: Phys. Rev. 55, 4756 (1997)

    ADS  MathSciNet  Google Scholar 

  17. Antoniadis, I., Mazur, P., Mottola, E.: Phys. Rev. 55, 4770 (1997)

    ADS  MathSciNet  Google Scholar 

  18. Hamada, K., Sugino, F.: Nucl. Phys. B 553, 283 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Hamada, K., Horata, S.: Prog. Theor. Phys. 110, 1169 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Hamada, K.: Int. J. Mod. Phys. A 20, 5353 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Hamada, K.: Int. J. Mod. Phys. A 24, 3073 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Lee, T., Wick, G.: Nucl. Phys. B 9, 209 (1969)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Horava, P.: Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Bonora, L., Cotta-Ramusino, P., Reina, C.: Phys. Lett. B 126, 305 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wess, J., Zumino, B.: Phys. Lett. B 37, 95 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  26. Polyakov, A.: Phys. Lett. B 103, 207 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  27. Curtright, T., Thorn, C.: Phys. Rev. Lett. 48, 1309 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  28. Knizhnik, V., Polyakov, A., Zamolodchikov, A.: Mod. Phys. Lett. A 3, 819 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  29. Distler, J., Kawai, H.: Nucl. Phys. B 321, 509 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  30. David, F.: Mod. Phys. Lett. A 3, 1651 (1988)

    Article  ADS  Google Scholar 

  31. Seiberg, N.: Prog. Theor. Phys. Suppl. 102, 319 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  32. Capper, D., Duff, M.: Nuovo Cimento A 23, 173 (1974)

    Article  ADS  Google Scholar 

  33. Deser, S., Duff, M., Isham, C.: Nucl. Phys. B 111, 45 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Duff, M.: Nucl. Phys. B 125, 334 (1977)

    Article  ADS  Google Scholar 

  35. Varshalovich, D., Moskalev, A., Khersonskii, V.: Quantum Theory of Angular Momentum. Singapore, World Scientific (1988)

    Google Scholar 

  36. Hamada, K., Yukawa, T.: Mod. Phys. Lett. A 20, 509 (2005)

    Article  MATH  ADS  Google Scholar 

  37. Hamada, K., Horata, S., Yukawa, T.: Phys. Rev. D 74, 123502 (2006)

    Article  ADS  Google Scholar 

  38. Hamada, K., Horata, S., Yukawa, T.: Phys. Rev. D 81, 083533 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ji Hamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamada, Kj. Vertex Operators in 4D Quantum Gravity Formulated as CFT. Found Phys 41, 863–882 (2011). https://doi.org/10.1007/s10701-010-9533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9533-0

Keywords

Navigation