Foundations of Physics

, Volume 41, Issue 4, pp 705–733 | Cite as

Quantum Locality

Article

Abstract

It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is no reason to suspect any conflict between quantum theory and special relativity.

Keywords

Locality Quantum theory Nonlocal influence Einstein Bell inequality 

References

  1. 1.
    Bell, J.S.: Bertlmann’s socks and the nature of reality. J. Phys. (Paris) 42(C2), 41–61 (1981) CrossRefGoogle Scholar
  2. 2.
    Heywood, P., Redhead, M.L.G.: Nonlocality and the Kochen-Specker paradox. Found. Phys. 13, 481–499 (1983) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Bell, J.S.: La nouvelle cuisine. In: Sarlemijn, A., Kross, P. (eds.) Between Science and Technology, pp. 97–115. Elsevier, Amsterdam (1990) Google Scholar
  4. 4.
    Albert, D.Z.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992) Google Scholar
  5. 5.
    Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379–384 (1994) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Paty, M.: The nature of Einstein’s objections to the Copenhagen interpretation of quantum mechanics. Found. Phys. 25, 183–204 (1995) MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    Goldstein, S.: Quantum philosophy: the flight from reason in science. In: Gross, P.R., Levitt, N., Lewis, M.W. (eds.) The Flight From Science and Reason, pp. 119–125. New York Academy of Sciences, New York (1996) Google Scholar
  8. 8.
    Suarez, A., Scarani, V.: Does entanglement depend on the timing of the impacts at the beam splitters? Phys. Lett. A 232, 9–14 (1997) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Maudlin, T.: Quantum Non-Locality and Relativity, 2nd edn. Wiley/Blackwell, New York (2002) CrossRefGoogle Scholar
  10. 10.
    Shimony, A.: Bell’s theorem. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy (2004). plato.stanford.edu/entries/bell-theorem/ Google Scholar
  11. 11.
    Elitzur, A.C., Dolev, S.: Quantum phenomena within a new theory of time. In: Elitzur, A., Dolev, S., Kolenda, N. (eds.) Quo Vadis Quantum Mechanics? pp. 325–349. Springer, Berlin (2005) CrossRefGoogle Scholar
  12. 12.
    d’Espagnat, B.: On Physics and Philosophy. Princeton University Press, Princeton (2006) Google Scholar
  13. 13.
    Norsen, T.: Bell locality and the nonlocal character of nature. Found. Phys. Lett. 19, 633–655 (2006) quant-ph/0601205 MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Shimony, A.: Aspects of nonlocality in quantum mechanics. In: Evans, J., Thorndike, A.S. (eds.) Quantum Mechanics at the Crossroads, pp. 107–123. Springer, Berlin (2007) CrossRefGoogle Scholar
  15. 15.
    Laudisa, F.: Non-local realistic theories and the scope of the Bell theorem. Found. Phys. 38, 1110–1132 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Berkovitz, J.: Action at a distance in quantum mechanics. Stanford Encyclopedia of Philosophy. (2007). www.plato.stanford.edu/entries/qm-action-distance/
  17. 17.
    Fine, A.: Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 23, 1306–1310 (1982) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Fine, A.: Do correlations need to be explained? In: Cushing, J.T., McMullin, E. (eds.): Philosophical Consequences of Quantum Theory, pp. 175–194. University of Notre Dame Press, Notre Dame (1989) Google Scholar
  19. 19.
    de Muynck, W.M.: The Bell inequalities and their irrelevance to the problem of locality in quantum mechanics. Phys. Lett. A 114, 65–67 (1986) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    de Muynck, W.M., De Baere, W., Martens, H.: Interpretation of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness. Found. Phys. 24, 1589–1664 (1994) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    de Muynck, W.M.: Foundations of Quantum Mechanics, an Empiricist Approach. Kluwer Academic, Dordrecht (2002) MATHGoogle Scholar
  22. 22.
    Mermin, N.D.: What do these correlations know about reality? Nonlocality and the absurd. Found. Phys. 29, 571–587 (1999). arXiv:quant-ph/9807055 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Smerlak, M., Rovelli, C.: Relational EPR. Found. Phys. 37, 427–445 (2007). arXiv:quant-ph/0604064v3 MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Brukner, C̆., Żukowski, M.: Bell’s inequalities: foundations and quantum communication. In: Rozenberg, G., Baeck, T.H.W., Kok, J.N. (eds.) Handbook of Natural Computing. Springer, Berlin (2010). arXiv:0909.2611v1 Google Scholar
  25. 25.
    Blaylock, G.: The EPR paradox, Bell’s inequality, and the question of locality. Am. J. Phys. 78, 111–120 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    Maudlin, T.: What Bell proved: A reply to Blaylock. Am J. Phys. 78, 121–125 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    Albert, D.Z., Galchen, R.: A quantum threat to special relativity. Sci. Am. 300(3), 32–39 (2009) CrossRefGoogle Scholar
  28. 28.
    Di Giuseppe, G., De Martini, F., Boschi, D.: Experimental test of the violation of local realism in quantum mechanics without Bell inequalities. Phys. Rev. A 56, 176–181 (1997) ADSCrossRefGoogle Scholar
  29. 29.
    Kwiat, P.G., White, A.G., Mitchell, J.R., Nairz, O., Weihs, G., Weinfurter, H., Zeilinger, A.: High-efficiency quantum interrogation measurements via the quantum Zeno effect. Phys. Rev. Lett. 83, 4725–4728 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information, vol. I, pp. 88–91. Singapore, World Scientific (2004) MATHGoogle Scholar
  31. 31.
    Walther, P., Aspelmeyer, M., Resch, K.J., Zeilinger, A.: Experimental violation of a cluster state Bell inequality. Phys. Rev. Lett. 95, 020403 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn., pp. 423–428. Prentice Hall, Upper Saddle River (2005) Google Scholar
  33. 33.
    Yang, T., Zhang, Q., Chen, T.-Y., Lu, S., Yin, J., Pan, J.-W., Wei, Z.-Y., Tian, J.-R., Zhang, J.: Experimental synchronization of independent entangled photon sources. Phys. Rev. Lett. 96, 110501 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, C̆., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: An experimental test of non-local realism. Nature 446, 871–875 (2007). arXiv:0704.2529 ADSCrossRefGoogle Scholar
  35. 35.
    Mullin, W.J., Laloë, F.: Interference of Bose-Einstein condensates: quantum nonlocal effects. Phys. Rev. A 78, 061605 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    Ghirardi, G.C., Rimini, A., Weber, T.: A general argument against superluminal transmission through the quantum mechanical measurement process. Lett. Nuovo Cimento 27, 293–298 (1980) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Bruss, D., D’Ariano, G.M., Macchiavello, C., Sacchi, M.F.: Approximate quantum cloning and the impossibility of superluminal information transfer. Phys. Rev. A 62, 062302 (2000) ADSCrossRefGoogle Scholar
  38. 38.
    Caves, C.M., Fuchs, C.A., Schack, R.: Subjective probability and quantum certainty. Studies Hist. Philos. Mod. Phys. 38, 255–274 (2007). arXiv:quant-ph/0608190 MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Bell, J.S.: Against measurement. In: Miller, A.I. (ed.) Sixty-Two Years of Uncertainty, pp. 17–31. Plenum, New York (1990) Google Scholar
  40. 40.
    Kuhn, T.S.: The Structure of Scientific Revolutions, 2nd edn. University of Chicago Press, Chicago (1970) Google Scholar
  41. 41.
    Chang, H., Cartwright, N.: Causality and realism in the EPR experiment. Erkenntnis 38, 169–190 (1993) MathSciNetCrossRefGoogle Scholar
  42. 42.
    Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984) ADSMATHCrossRefGoogle Scholar
  43. 43.
    Omnès, R.: Logical reformulation of quantum mechanics I. Foundations. J. Stat. Phys. 53, 893–932 (1988) ADSMATHCrossRefGoogle Scholar
  44. 44.
    Gell-Mann, M., Hartle, J.B.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W.H. (ed.) Complexity, Entropy and the Physics of Information, pp. 425–458. Addison-Wesley, Redwood City (1990) Google Scholar
  45. 45.
    Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993) MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Griffiths, R.B.: Consistent histories and quantum reasoning. Phys. Rev. A 54, 2759–2774 (1996) ADSCrossRefGoogle Scholar
  47. 47.
    Griffiths, R.B.: Choice of consistent family, and quantum incompatibility. Phys. Rev. A 57, 1604–1618 (1998). arXiv:quant-ph/9708028 ADSCrossRefGoogle Scholar
  48. 48.
    Omnès, R.: Understanding Quantum Mechanics. Princeton University Press, Princeton (1999) MATHGoogle Scholar
  49. 49.
    Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002). http://quantum.phys.cmu.edu/CQT/ MATHGoogle Scholar
  50. 50.
    Gell-Mann, M., Hartle, J.B.: Quasiclassical coarse graining and thermodynamic entropy. Phys. Rev. A 76, 022104 (2007). arXiv:quant-ph/0609190 ADSCrossRefGoogle Scholar
  51. 51.
    Wigner, E.P.: The problem of measurement. Am. J. Phys. 31, 6–15 (1963) MathSciNetADSMATHCrossRefGoogle Scholar
  52. 52.
    Busch, P., Shimony, A.: Insolubility of the quantum measurement problem for unsharp observables. Stud. Hist. Phil. Mod. Phys. 27, 397–404 (1996) MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Mittelstaedt, P.: The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  54. 54.
    Griffiths, R.B.: EPR, Bell, and Quantum Locality (2010). arXiv:1007.4281
  55. 55.
    Griffiths, R.B.: Consistent histories. In: Greenberger, D., Hentschel, K., Weinert, F. (eds.) Compendium of Quantum Physics, pp. 117–122. Springer, Berlin (2009) CrossRefGoogle Scholar
  56. 56.
    Hohenberg, P.C.: An introduction to consistent quantum theory (2010). arXiv:0909.2359v3
  57. 57.
    Bohm, D.: Quantum Theory. Englewood Cliffs, Prentice Hall (1951), chapter 22 Google Scholar
  58. 58.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935) ADSMATHCrossRefGoogle Scholar
  59. 59.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969) ADSCrossRefGoogle Scholar
  60. 60.
    Greenberger, D.M., Horne, M., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989) Google Scholar
  61. 61.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990) MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    Hardy, L.: Quantum mechanics, local realistic theories and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992) MathSciNetADSMATHCrossRefGoogle Scholar
  63. 63.
    Stapp, H.P.: Comments on Shimony’s “An analysis of Stapp’s ‘A Bell-type theorem without hidden variables”. Found. Phys. 36, 73–82 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  64. 64.
    Griffiths, R.B.: Consistent resolution of some relativistic quantum paradoxes. Phys. Rev. A 66, 062101 (2002). arXiv:quant-ph/0207015 MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    Feller, W.: An Introduction to probability Theory and Its Applications, vol. 1, 3rd edn. Wiley, New York (1968) MATHGoogle Scholar
  66. 66.
    DeGroot, M.H., Schervish, M.J.: Probability and Statistics, 3rd edn. Addison-Wesley, Boston (2002) Google Scholar
  67. 67.
    Mermin, N.D.: Quantum mechanics vs local realism near the classical limit: A Bell inequality for spin s. Phys. Rev. D 22, 356–361 (1980) MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    Garg, A., Mermin, N.D.: Local realism and measured correlations in the spin-s Einstein-Podolsky-Rosen experiment. Phys. Rev. D 27, 339–348 (1983) ADSCrossRefGoogle Scholar
  69. 69.
    Singh, C., Belloni, M., Christian, W.: Improving students’ understanding of quantum mechanics. Phys. Today 59(8), 43–49 (2006) CrossRefGoogle Scholar
  70. 70.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  71. 71.
    Mermin, N.D.: Quantum Computer Science. Cambridge University Press, New York (2007) MATHGoogle Scholar
  72. 72.
    Griffiths, R.B., Niu, C.-S.: Semiclassical Fourier transform for quantum computation. Phys. Rev. Lett. 76, 3228–3231 (1996) ADSCrossRefGoogle Scholar
  73. 73.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955) MATHGoogle Scholar
  74. 74.
    Mermin, N.D.: The Ithaca interpretation of quantum mechanics. Pramana 51, 549–565 (1998) ADSCrossRefGoogle Scholar
  75. 75.
    Einstein, A.: Autobiographical notes. In: Schilpp, P.A. (ed.) Albert Einstein: Philosopher-Scientist, 2nd edn., pp. 1–95. Tudor Publishing Co., New York (1951) Google Scholar
  76. 76.
    Goldstein, S.: Bohmian mechanics. In: Stanford Encyclopedia of Philosophy (2006) Google Scholar
  77. 77.
    Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379, 257 (2003). arXiv:quant-ph/0302164 MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations