Advertisement

Foundations of Physics

, Volume 41, Issue 4, pp 686–704 | Cite as

Relativistic State Reduction Dynamics

  • Daniel J. Bedingham
Article

Abstract

A mechanism describing state reduction dynamics in relativistic quantum field theory is outlined. The mechanism involves nonlinear stochastic modifications to the standard description of unitary state evolution and the introduction of a relativistic field in which a quantized degree of freedom is associated to each point in spacetime. The purpose of this field is to mediate in the interaction between classical stochastic influences and conventional quantum fields. The equations of motion are Lorentz covariant, frame independent, and do not result in divergent behavior. It is shown that the mathematical framework permits the specification of unambiguous local properties providing a connection between the model and evidence of real world phenomena. The collapse process is demonstrated for an idealized example.

Keywords

Quantum measurement problem Dynamical state reduction/collapse models Quantum field theory Stochastic processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ghirardi, G.C., Rimini, A., Weber, T.: Phys. Rev. D 34, 470 (1986) MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    Ghirardi, G.C., Pearle, P., Rimini, A.: Phys. Rev. A 42, 78 (1990) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Bassi, A., Ghirardi, G.C.: Phys. Rep. 379, 257 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Pearle, P.: In: Breuer, H.P., Petruccionne, F. (eds.) Open Systems and Measurement in Relativistic Quantum Field Theory. Springer, Berlin (1999) Google Scholar
  5. 5.
    Pearle, P.: In: Miller, A.I. (ed.) Sixty-Two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Physics. Plenum, New York (1990) Google Scholar
  6. 6.
    Ghirardi, G.C., Grassi, R., Pearle, P.: Found. Phys. 20, 1271 (1990) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Nicrosini, O., Rimini, A.: Found. Phys. 33, 1061 (2003) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pearle, P.: Phys. Rev. A 72, 022112 (2005) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Pearle, P.: Phys. Rev. A 78, 022107 (2008) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Aharonov, Y., Albert, D.Z.: Phys. Rev. D 29, 228 (1984) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Bedingham, D.J.: J. Phys. A, Math. Theor. 42, 465301 (2009) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2004) CrossRefGoogle Scholar
  13. 13.
    Ghirardi, G.C.: Found. Phys. 30, 1337 (2000) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tumulka, R.: J. Stat. Phys. 125, 821 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations