Foundations of Physics

, Volume 40, Issue 12, pp 1902–1910 | Cite as

A Flawed Argument Against Actual Infinity in Physics



In “Nonconservation of Energy and loss of Determinism II. Colliding with an Open Set” (2010) Atkinson and Johnson argue in favour of the idea that an actual infinity should be excluded from physics, at least in the sense that physical systems involving an actual infinity of component elements should not be admitted. In this paper I show that the argument Atkinson and Johnson use is erroneous and that an analysis of the situation considered by them is possible without requiring any type of rejection of the idea of infinity.


Infinite systems Indeterminism Collisions Nonconservation of energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alper, J.S., Bridger, M.: Newtonian supertasks: a critical analysis. Synthese 114, 335–369 (1998) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Atkinson, D., Johnson, P.: Nonconservation of energy and loss of determinism II. Colliding with an open set. Found. Phys. 40, 179–189 (2010) MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Frémond, M.: Non-Smooth Thermo-Mechanics. Springer, Berlin (2002) Google Scholar
  4. 4.
    Peijnenburg, J., Atkinson, D.: Lamps, cubes, balls and walls, Zeno problems and solutions. Philos. Stud. 150, 49–59 (2010) CrossRefGoogle Scholar
  5. 5.
    Pérez Laraudogoitia, J.: A beautiful supertask. Mind 105, 81–83 (1996) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Pérez Laraudogoitia, J.: Some relativistic and higher order supertasks. Philos. Sci. 65, 502–517 (1998) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Pérez Laraudogoitia, J.: An interesting fallacy concerning dynamical supertasks. Br. J. Philos. Sci. 56, 321–334 (2005) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Universidad del Pais VascoVitoria-GasteizSpain

Personalised recommendations