Advertisement

Foundations of Physics

, Volume 40, Issue 12, pp 1858–1884 | Cite as

The Theory of (Exclusively) Local Beables

  • Travis Norsen
Article

Abstract

It is shown how, starting with the de Broglie–Bohm pilot-wave theory, one can construct a new theory of the sort envisioned by several of QM’s founders: a Theory of Exclusively Local Beables (TELB). In particular, the usual quantum mechanical wave function (a function on a high-dimensional configuration space) is not among the beables posited by the new theory. Instead, each particle has an associated “pilot-wave” field (living in physical space). A number of additional fields (also fields on physical space) maintain what is described, in ordinary quantum theory, as “entanglement.” The theory allows some interesting new perspective on the kind of causation involved in pilot-wave theories in general. And it provides also a concrete example of an empirically viable quantum theory in whose formulation the wave function (on configuration space) does not appear—i.e., it is a theory according to which nothing corresponding to the configuration space wave function need actually exist. That is the theory’s raison d’etre and perhaps its only virtue. Its vices include the fact that it only reproduces the empirical predictions of the ordinary pilot-wave theory (equivalent, of course, to the predictions of ordinary quantum theory) for spinless non-relativistic particles, and only then for wave functions that are everywhere analytic. The goal is thus not to recommend the TELB proposed here as a replacement for ordinary pilot-wave theory (or ordinary quantum theory), but is rather to illustrate (with a crude first stab) that it might be possible to construct a plausible, empirically viable TELB, and to recommend this as an interesting and perhaps-fruitful program for future research.

Keywords

Pilot-wave theory Bohmian mechanics Local beables Bell’s theorem Einstein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein, A.: Concerning an heuristic point of view toward the emission and transformation of light. Am. J. Phys. 33(5), 367–374 (1965). A.B. Arons, M.B. Peppard, trans. CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Wigner, E.P.: Thirty years of knowing Einstein. In: Woolf, H. (ed.) Some Strangeness in the Proportion. Addison-Wesley, Reading (1980) Google Scholar
  3. 3.
    Frank, P.: Einstein: his life and times, p. 208. A. Knopf, New York (1963). G. Rosen, trans. Google Scholar
  4. 4.
    Lorentz, H.A.: Problems of Modern Physics, pp. 156–157. Dover, New York (1967) (a republication of the work originally published by Ginn and Company in 1927) Google Scholar
  5. 5.
    Slater, J.C.: Solid-State and Molecular Theory: A Scientific Biography, pp. 8–14. Wiley, New York (1975) Google Scholar
  6. 6.
    Przibam, K. (ed.) Letters on Wave Mechanics, p. 31. The Philosophical Library, New York (1967) Google Scholar
  7. 7.
    Valentini, A., Bacciagaluppi, G.: Quantum Theory at the Crossroads. Cambridge University Press, Cambridge (2009). quant-ph/0609184 MATHGoogle Scholar
  8. 8.
    Belousek, D.W.: Einstein’s 1927 unpublished hidden-variable theory: its background, context and significance. Stud. Hist. Philos. Mod. Phys. 27(4), 437–461 (1996) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Holland, P.: What’s wrong with Einstein’s 1927 hidden variable interpretation of quantum mechanics? Found. Phys. 35, 177–196 (2005) MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Cushing, J.: Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony. University of Chicago Press, Chicago (1994) MATHGoogle Scholar
  11. 11.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden variables’. Phys. Rev. 85, 166–193 (1952) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Howard, D.: ‘Nicht Sein Kann Was Nicht Sein Darf,’ or the Prehistory of EPR, 1909–1935: Einstein’s early worries about the quantum mechanics of composite systems. In: Miller, A.I. (ed.) Sixty-Two Years of Uncertainty. Plenum, New York (1990) Google Scholar
  13. 13.
    Bell, J.S.: Speakable and Unspeakable in Quantum Theory, 2nd edn. Cambridge University Press, Cambridge (2004) Google Scholar
  14. 14.
    de Broglie, L.: The Current Interpretation of Wave Mechanics: A Critical Study. Elsevier, Amsterdam (1964) Google Scholar
  15. 15.
    Freistadt, H.: The causal formulation of quantum mechanics of particles (the theory of De Broglie, Bohm and Takabayasi). Nuovo Cimento 5(1), 1–70 (1957) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Wessels, L.: Schrödinger’s route to wave mechanics. Stud. Hist. Philos. Sci. Part A 10(4), 311–340 (1979). The remark of Eckart is sourced to a May 31, 1962 interview with Eckart conducted by J. Heilbron, under the auspices of the AHQP CrossRefMathSciNetGoogle Scholar
  17. 17.
    Callender, C., Weingard, R.: Trouble in paradise? Problems for Bohm’s theory. The Monist 80(1), 24–43 (1997) Google Scholar
  18. 18.
    Mermin, N.D.: What’s bad about this habit? Phys. Today 8–9 (2009) Google Scholar
  19. 19.
    Dürr, D., Goldstein, S., Zanghi, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992) MATHCrossRefADSGoogle Scholar
  20. 20.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghi, N.: On the role of density matrices in Bohmian mechanics. Found. Phys. 35(3), 449–467 (2005) MATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Allori, V., Goldstein, S., Tumulka, R., Zanghi, N.: Many-worlds and Schroedinger’s first quantum theory. arxiv:0903.2211
  22. 22.
    Maudlin, T.: Completeness, supervenience, and ontology. J. Phys. A 40, 3151–3171 (2007) MATHMathSciNetADSGoogle Scholar
  23. 23.
    Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954) MATHCrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Anandan, J., Brown, H.R.: On the reality of spacetime geometry and the wavefunction. Found. Phys. 25(2), 349 (1995) CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Holland, P.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993) CrossRefGoogle Scholar
  26. 26.
    Valentini, A.: On Galilean and Lorentz invariance in pilot-wave dynamics. Phys. Lett. A 228, 215–222 (1997) MATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Valentini, A., Westman, H.: Dynamical origin of quantum probabilities. Proc. R. Soc. Lond. A 461, 253–272 (2005) MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Marlboro CollegeMarlboroUSA

Personalised recommendations