Advertisement

Foundations of Physics

, Volume 41, Issue 2, pp 204–241 | Cite as

Bondi-Metzner-Sachs Symmetry, Holography on Null-surfaces and Area Proportionality of “Light-slice” Entropy

  • Bert SchroerEmail author
Article

Abstract

It is shown that certain kinds of behavior, which hitherto were expected to be characteristic for classical gravity and quantum field theory in curved spacetime, as the infinite dimensional Bondi-Metzner-Sachs symmetry, holography on event horizons and an area proportionality of entropy, have in fact an unnoticed presence in Minkowski QFT.

This casts new light on the fundamental question whether the volume proportionality of heat bath entropy and the (logarithmically corrected) dimensionless area law obeyed by localization-induced thermal behavior are different geometric parametrizations which share a common primordial algebraic origin. Strong arguments are presented that these two different thermal manifestations can be directly related, this is in fact the main aim of this paper.

It will be demonstrated that QFT beyond the Lagrangian quantization setting receives crucial new impulses from holography onto horizons.

The present paper is part of a project aimed at elucidating the enormous physical range of “modular localization”. The latter does not only extend from standard Hamiltonian heat bath thermal states to thermal aspects of causal- or event-horizons addressed in this paper. It also includes the recent understanding of the crossing property of formfactors whose intriguing similarity with thermal properties was, although sometimes noticed, only sufficiently understood in the modular setting (Schroer in arXiv:0905.4006 (2009)).

Keywords

Quantum field theory Localization-caused thermal behavior Holographic projections onto null-surfaces (horizons) Bondi-Metzner-Sachs symmetry as subgroup of infinite-dimensional holographic symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bisognano, J.J., Wichmann, E.H.: J. Math. Phys. 17, 30 (1976) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Schroer, B.: Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I (the two antagonistic localizations and their asymptotic compatibility), Stud. Hist. Philos. Phys. B 41, 104 (2010) CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Schroer, B.: Localization and the interface between quantum mechanics, quantum field theory and quantum gravity II (The search of the interface between QFT and QG), Stud. Hist. Philos. Mod. Phys. (2010, to appear). arXiv:0912.2886
  4. 4.
    Schroer, B.: Class. Quantum Gravity 24, 4239 (2007) and preceding articles by the same author zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Sewell, G.L.: Ann. Phys. 141, 201 (1982) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Summers, S.J., Verch, R.: Lett. Math. Phys. 37, 145 (1996) zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Guido, D., Longo, R., Roberts, J.E., Verch, R.: Rev. Math. Phys. 13, 125 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hawking, S.W.: Commun. Math. Phys. 43, 19 (1975) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Haag, R.: Local Quantum Physics. Springer, Berlin (1996) zbMATHGoogle Scholar
  10. 10.
    Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Lecture Notes in Mathematics, vol. 128. Springer, Berlin (1970) zbMATHGoogle Scholar
  11. 11.
    ’t Hooft, G.: Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026
  12. 12.
    Schroer, B.: Jorge A. Swieca’s contributions to quantum field theory in the 60s and 70s and their relevance in present research. Eur. Phys. J. H (to be published). arXiv:0712.0371
  13. 13.
    Bousso, R.: Rev. Mod. Phys. 74, 825 (2002) CrossRefMathSciNetADSzbMATHGoogle Scholar
  14. 14.
    Sachs, R.: Phys. Rev. 128, 2851 (1962) CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Unruh, W.G.: Phys. Rev. D 14, 870 (1976) CrossRefADSGoogle Scholar
  16. 16.
    Driessler, W.: Acta Phys. Austr. 46, 63 (1977) MathSciNetGoogle Scholar
  17. 17.
    Brunetti, R., Fredenhagen, K., Verch, R.: Commun. Math. Phys. 237, 31 (2003) zbMATHMathSciNetADSGoogle Scholar
  18. 18.
    Glaser, V., Lehmann, H., Zimmermann, W.: Nuovo Cimento 6, 1122 (1957) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Schroer, B.: A critical look at 50 years particle theory from the perspective of the crossing property. arXiv:0905.4006
  20. 20.
    Babujian, H., Karowski, M.: The “Bootstrap program” for integrable quantum field theories in 1+1 Dim. arXiv:hep-th/0110261
  21. 21.
    Schroer, B.: J. Phys. A 35, 9165 (2002) zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Schroer, B.: Int. J. Math. Phys. A 18, 1671 (2003) zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Schroer, B.: Int. J. Mod. Phys. A 19S2, 348 (2004) CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Schroer, B.: Nucl. Phys. B 499, 547 (1997) zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Schroer, B.: Ann. Phys. 275, 190 (1999) zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Lechner, G.: Commun. Math. Phys. 277, 821 (2008) zbMATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Babujian, H., Karowski, M.: Int. J. Mod. Phys. A 19S2, 34 (2004) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Zamolodchikov, A.B., Zamolodchikov, Al.: Ann. Phys. 120, 253 (1979) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Duetsch, M., Rehren, K.-H.: Henri Poincaré 4, 613 (2003). arXiv:math-ph/0209035 zbMATHCrossRefGoogle Scholar
  30. 30.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984) zbMATHGoogle Scholar
  31. 31.
    Bischoff, M., Meise, D., Rehren, K.-H., Wagner, I.: Conformal quantum field theory in various dimensions. Bulg. J. Phys. 36, 170 (2009) zbMATHMathSciNetGoogle Scholar
  32. 32.
    Dappiaggi, C.: Free field theory at null infinity and white noise calculus: a BMS invariant dynamical system. arXiv:math-ph/0607055
  33. 33.
    Brunetti, R., Guido, D., Longo, R.: Rev. Math. Phys. 14, 759 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Fassarella, L., Schroer, B.: J. Phys. A 35, 9123 (2002) zbMATHCrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Mund, J., Schroer, B., Yngvason, J.: Commun. Math. Phys. 268, 621 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Dappiaggi, C.: Phys. Lett. B 615, 291 (2005) MathSciNetADSGoogle Scholar
  37. 37.
    Newton, T.D., Wigner, E.P.: Rev. Mod. Phys. 21, 400 (1949) zbMATHCrossRefADSGoogle Scholar
  38. 38.
    Bombelli, L., Kaul, R.K., Lee, J., Sorkin, R.: Phys. Rev. D 34, 373 (1986) CrossRefMathSciNetADSzbMATHGoogle Scholar
  39. 39.
    Doplicher, S., Longo, R.: Invent. Math. 75, 493 (1984) zbMATHCrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Requardt, M.: Commun. Math. Phys. 50, 256 (1976) CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Hartle, J., Hawking, S.W.: Phys. Rev. D 28, 2960 (1983) CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Cardy, J.: Entanglement entropy in extended quantum systems. arXiv:0708.2978
  43. 43.
    Longo, R., Xu, F.: Commun. Math. Phys. 251, 321 (2004) zbMATHCrossRefMathSciNetADSGoogle Scholar
  44. 44.
    Borchers, H.-J., Yngvason, J.: J. Math. Phys. 40, 601 (1999) zbMATHCrossRefMathSciNetADSGoogle Scholar
  45. 45.
    Schroer, B., Wiesbrock, H.-W.: Rev. Math. Phys. 12, 461 (2000). arXiv:hep-th/9901031 zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995) zbMATHCrossRefMathSciNetADSGoogle Scholar
  47. 47.
    Haag, R., Swieca, J.A.: Commun. Math. Phys. 1, 308 (1965) zbMATHCrossRefMathSciNetADSGoogle Scholar
  48. 48.
    Buchholz, D., Wichmann, E.H.: Commun. Math. Phys. 106, 321 (1986) zbMATHCrossRefMathSciNetADSGoogle Scholar
  49. 49.
    Dappiaggi, C., Moretti, V., Pinamonti, N.: Rev. Math. Phys. 18, 349 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Moretti, V.: Commun. Math. Phys. 268, 727 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  51. 51.
    Moretti, V.: Commun. Math. Phys. 279, 31 (2008) zbMATHCrossRefMathSciNetADSGoogle Scholar
  52. 52.
    Brunetti, R., Fredenhagen, K., Verch, R.: Commun. Math. Phys. 237, 31 (2003) zbMATHMathSciNetADSGoogle Scholar
  53. 53.
    Hollands, S., Wald, R.E.: Gen. Relativ. Gravit. 36, 2595 (2004) zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.CBPFRio de JaneiroBrazil
  2. 2.Institut fuer Theoretische Physik der FU BerlinBerlinGermany

Personalised recommendations