Advertisement

Foundations of Physics

, Volume 40, Issue 12, pp 1800–1857 | Cite as

A Critical Look at 50 Years Particle Theory from the Perspective of the Crossing Property

  • Bert SchroerEmail author
Article

Abstract

The crossing property is perhaps the most subtle aspect of the particle-field relation. Although it is not difficult to state its content in terms of certain analytic properties relating different matrixelements of the S-matrix or formfactors, its relation to the localization- and positive energy spectral principles requires a level of insight into the inner workings of QFT which goes beyond anything which can be found in typical textbooks on QFT. This paper presents a recent account based on new ideas derived from “modular localization” including a mathematic appendix on this subject. Its main achievement is the proof of the crossing property from a two-algebra generalization of the KMS condition.

The main content is an in-depth criticism of the dual model and its string theoretic extension. The conceptual flaws of these models are closely related to misunderstandings of crossing. The correct interpretation of string theory is that of a dynamic infinite component one particle space where “dynamic” means that, unlike a mere collection of independent free fields, the formalism contains also operators which communicate between the different irreducible Poincaré representations and set the mass/spin spectrum. Whereas in pre-string times there were unsuccessful attempts to achieve this in analogy to the O(4,2) hydrogen spectrum by the use of higher noncompact groups, the superstring in d=9+1, which uses instead (bosonic/fermionic) oscillators obtained from multicomponent chiral currents, is the only known solution of the dynamical infinite component pointlike field (or pointlike generated wave function) project.

Keywords

Quantum field theory S-matrix theory Crossing property Dual model String theory Born-Newton-Wigner localization Modular localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heisenberg, W.: Z. Naturforschung 1, 608 (1946) MathSciNetADSGoogle Scholar
  2. 2.
    Bros, J., Epstein, H., Glaser, V.: Commun. Math. Phys. 1, 240 (1965) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Epstein, H., Glaser, V., Martin, A.: Commun. Math. Phys. 13, 257 (1969) zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Martin, A.: Scattering Theory, Unitarity, Analyticity and Crossing. Springer, Berlin (1969) Google Scholar
  5. 5.
    Bros, J.: Phys. Rep. 134 (1986) Google Scholar
  6. 6.
    Karowski, M., Thun, H.-J., Truoung, T.T., Weiss, P.: Phys. Rev. Lett. B 67, 321 (1977) ADSGoogle Scholar
  7. 7.
    Babujian, H., Förster, A., Karowski, M.: Nucl. Phys. B 825, 396 (2010) zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Di Vecchia, P.: arXiv:0704.0101
  9. 9.
    Jost, R.J.: Helvetica Phys. Acta 36, 77 (1963) zbMATHGoogle Scholar
  10. 10.
    Heisenberg, W.: Verh. Sächs. Akad. 86, 317 (1934) Google Scholar
  11. 11.
    Furry, W.H., Oppenheimer, J.R.: Phys. Rev. 45, 245 (1934) zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Borchers, H.J., Buchholz, D., Schroer, B.: Commun. Math. Phys. 219, 125 (2001) zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics and All That. Benjamin, New York (1964) zbMATHGoogle Scholar
  14. 14.
    Haag, R.: Local Quantum Physics, 2nd edn. Springer, Berlin (1996) zbMATHGoogle Scholar
  15. 15.
    Wald, R.E.: arXiv:gr-qc/0608018
  16. 16.
    Epstein, H., Glaser, V.: Ann. Inst. H. Poincare A XIX, 211 (1973) MathSciNetGoogle Scholar
  17. 17.
    Duetsch, M., Fredenhagen, K.: Commun. Math. Phys. 203, 71 (1999). hep-th/9807078 zbMATHCrossRefADSGoogle Scholar
  18. 18.
    Coester, F., Polyzou, W.N.: Phys. Rev. D 26, 1348 (1982) and references therein CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Schroer, B.: arXiv:0912.2874
  20. 20.
    Schroer, B.: arXiv:0912.2886
  21. 21.
    Brunetti, R., Guido, D., Longo, R.: Rev. Math. Phys. 14, 759 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schroer, B.: Nucl. Phys. B 499, 447 (1997) Google Scholar
  23. 23.
    Lechner, G.: Commun. Math. Phys. 227, 821 (2008). arXiv:math-ph/0601022 CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Buchholz, D., Mack, G., Todorov, I.: Nucl. Phys. B, Proc. Suppl. 5B, 20 (1988) zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Källén, G., Wightman, A.S.: Mat. Fys. Skrifter Kongl. Dansk. Vid. Selsk. 1, 6 (1958) Google Scholar
  26. 26.
    Bogoliubov, N.N., Logunov, A., Oksak, A.I., Todorov, I.T.: General Principles of Quantum Field Theory. Kluwer Academic, Dordrecht (1990) Google Scholar
  27. 27.
    Fubini, S., Veneziano, G.: Ann. Phys. 63, 12 (1971) CrossRefADSGoogle Scholar
  28. 28.
    Del Giudice, E., Di Vecchia, P., Fubini, S.: Ann. Phys. 70, 378 (1972) CrossRefADSGoogle Scholar
  29. 29.
    Staszkiewicz, C.P.: Die lokale Struktur abelscher Stromalgebren auf dem Kreis. Freie Universitaet, Thesis, Berlin (1995) Google Scholar
  30. 30.
    Doplicher, S., Roberts, J.E.: Commun. Math. Phys. 131, 51 (1990) zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Longo, R., Kawahigashi, Y.: Adv. Math. 206, 729 (2006) and references therein zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Mack, G.: arXiv:0909.1024
  33. 33.
    Mack, G.: arXiv:0907.2407
  34. 34.
    Mund, J., Schroer, B., Yngvason, J.: CMP 268, 621 (2006). math-ph/0511042 zbMATHMathSciNetGoogle Scholar
  35. 35.
    Polchinski, J.: String Theory. Cambridge University Press, Cambridge (1998) CrossRefGoogle Scholar
  36. 36.
    Schroer, B.: arXiv:1006.3543
  37. 37.
    Schroer, B.: Pascual Jordan’s legacy and the ongoing research in quantum field theory. In preparation Google Scholar
  38. 38.
    Buchholz, D., Fredenhagen, K.: Commun. Math. Phys. 84, 1 (1982) zbMATHCrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Nambu, Y.: Lectures at the Copenhagen Symposium (1970, unpublished) Google Scholar
  40. 40.
    Goto, T.: Progr. Theor. Phys. 46, 1560 (1971) zbMATHCrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Brower, R.C.: Phys. Rev. D 6, 1655 (1972) CrossRefADSGoogle Scholar
  42. 42.
    Goddard, P., Thorn, C.B.: Phys. Lett. B 40, 235 (1972) CrossRefADSGoogle Scholar
  43. 43.
    Weinberg, S.: The Quantum Theory of Fields I. Cambridge University Press, Cambridge (1995) Google Scholar
  44. 44.
    Dimock, J.: Ann. H. Poincaré 3, 613 (2002). math-ph/0102027 zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Martinec, E.: Class. Quantum Gravity 10, 187 (1993) CrossRefMathSciNetADSGoogle Scholar
  46. 46.
    Lowe, D.A.: Phys. Lett. B 326, 223 (1994) CrossRefADSGoogle Scholar
  47. 47.
    Scherk, J., Schwarz, J.: Nucl. Phys. B 81, 118 (1974) CrossRefADSGoogle Scholar
  48. 48.
    Clifton, R., Halvorson, H.: Br. J. Philos. Sci. 52, 417 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Arageorgis, J.E., Rutsche, L.: Philos. Sci. 70 (2003) Google Scholar
  50. 50.
    Fraser, D.: SHPMP 19, 841 (2008) MathSciNetGoogle Scholar
  51. 51.
    Clifton, R., Halvorson, H.: Stud. Hist. Philos. Mod. Phys. 32, 1 (2001). arXiv:quant-ph/0001107 CrossRefMathSciNetGoogle Scholar
  52. 52.
    Summers, S.J.: arXiv:0802.1854
  53. 53.
    Araki, H.: Publ. RIMS, Kyoto Univ. Ser. A 4, 361 (1968) zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Schroer, B.: arXiv:0905.4435
  55. 55.
    Aks, S.: J. Math. Phys. 6, 516 (1965) CrossRefMathSciNetADSGoogle Scholar
  56. 56.
    Schroer, B.: Ann. Phys. 307, 421 (2003). arXiv:hep-th/0106066 zbMATHCrossRefMathSciNetADSGoogle Scholar
  57. 57.
    Newton, T.D., Wigner, E.P.: Rev. Mod. Phys. 21, 400 (1949) zbMATHCrossRefADSGoogle Scholar
  58. 58.
    Zamolodchikov, A.B., Zamolodchikov, A.: AOP 120, 253 (1979) MathSciNetGoogle Scholar
  59. 59.
    Schroer, B.: Ann. Phys. 321, 435 (2006) and references to previous publications of the author zbMATHCrossRefMathSciNetADSGoogle Scholar
  60. 60.
    Babujian, H., Foerster, A., Karowski, M.: Nucl. Phys. B 736, 169 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  61. 61.
    Babujian, H., Karowski, M.: Int. J. Mod. Phys. A 1952, 34 (2004) and references therein to the beginnings of the bootstrap-formfactor program CrossRefMathSciNetGoogle Scholar
  62. 62.
    Schroer, B., Truong, T.T., Weiss, P.: Phys. Lett. B 63, 422 (1976) CrossRefADSGoogle Scholar
  63. 63.
    Born, M.: Z. Phys. 38, 803 (1926) ADSGoogle Scholar
  64. 64.
    Lowenstein, J.H., Schroer, B.: Phys. Rev. D 7, 1929 (1973) CrossRefADSGoogle Scholar
  65. 65.
    Gomes, M., Lowenstein, J.H.: Nucl. Phys. B 45, 252 (1972) CrossRefADSGoogle Scholar
  66. 66.
    Mund, J., Schroer, B.: An extended KMS property and the analytic crossing identity. In preparation Google Scholar
  67. 67.
    Rehren, K.-H.: hep-th/0411086
  68. 68.
    Duetsch, M., Rehren, K.-H.: Lett. Math. Phys. 62, 171 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Maldacena, J.A.: Adv. Theor. Math. Phys. 2, 231 (1998) zbMATHMathSciNetADSGoogle Scholar
  70. 70.
    Haag, R., Swieca, J.A.: Commun. Math. Phys. 1, 308 (1965) zbMATHCrossRefMathSciNetADSGoogle Scholar
  71. 71.
    Buchholz, D., Wichmann, E.: Commun. Math. Phys. 106, 321 (1986) zbMATHCrossRefMathSciNetADSGoogle Scholar
  72. 72.
    Schroer, B.: arXiv:0712.0371
  73. 73.
    Karowski, M.-, Weisz, P.: Nucl. Phys. B 139, 445 (1978) CrossRefMathSciNetADSGoogle Scholar
  74. 74.
    Zapata Marin, O.: arXiv:0905.1439, see also: Spinning the superweb, essays on the history of string theory, http://www.spinningthesuperweb.blogspot.com/
  75. 75.
    Smolin, L.: The trouble with physics: the rise of string theory, the fall of a science, and what comes next. September 2006 Google Scholar
  76. 76.
    Woit, P.: Not Even Wrong, the Failure of String Theory and the Continuing Challenge to Unify the Laws of Physics. Jonathan Cape, London (2006) Google Scholar
  77. 77.
    Hedrich, R.: physics/0610168
  78. 78.
    Fredenhagen, K., Rehren, K.-H., Seiler, E.: Springer Lecture Notes Phys. 721, 61 (2007). arXiv:hep-th/0603155 CrossRefMathSciNetADSGoogle Scholar
  79. 79.
    Fassarella, L., Schroer, B.: J. Phys. A 35, 9123 (2002) zbMATHCrossRefMathSciNetADSGoogle Scholar
  80. 80.
    Mund, J.: Commun. Math. Phys. 286, 1159 (2009) zbMATHCrossRefMathSciNetADSGoogle Scholar
  81. 81.
    Brunetti, R., Fredenhagen, K., Verch, R.: Commun. Math. Phys. 237, 31 (2003) zbMATHMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.CBPFRio de JaneiroBrazil
  2. 2.Institut fuer Theoretische Physik der FU BerlinBerlinGermany

Personalised recommendations