Skip to main content
Log in

The Definition of Mach’s Principle

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Two definitions of Mach’s principle are proposed. Both are related to gauge theory, are universal in scope and amount to formulations of causality that take into account the relational nature of position, time, and size. One of them leads directly to general relativity and may have relevance to the problem of creating a quantum theory of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mach, E.: Die Geschichte und Wurzel des Satzes von der Erhaltung der Arbeit. Prague (1872)

  2. Mach, E.: History and Root of the Principle of the Conservation of Energy. Open Court, Chicago (1911)

    MATH  Google Scholar 

  3. Mach, E.: Die Mechanik in ihrer Entwicklung Historisch-Kritisch Dargestellt (1883)

  4. Mach, E.: The Science of Mechanics. Open Court, Chicago (1960)

    Google Scholar 

  5. Einstein, A.: Prinzipielles zur allgemeinen Relativitätstheorie. Ann. Phys. 55, 241–244 (1918)

    Article  Google Scholar 

  6. Barbour, J., Pfister, H. (eds.): Mach’s principle: from Newton’s bucket to quantum gravity. Einstein Studies, vol. 6. Birkhäuser, Boston (1995)

    MATH  Google Scholar 

  7. Einstein, A.: Autobiographical notes. In: Schilpp, P. (ed.) Albert Einstein: Philosopher–Scientist. Harper & Row, New York (1949)

    Google Scholar 

  8. Poincaré, H.: Science et Hypothèse. Paris (1902)

  9. Poincaré, H.: Science and Hypothesis. Walter Scott, London (1905)

    Google Scholar 

  10. Descartes, R.: Principia Philosophiae (1644)

  11. Descartes, R.: Principles of Philosophy. Dordrecht, Reidel (1983)

    Google Scholar 

  12. Barbour, J.: The Discovery of Dynamics. Oxford University Press, London (2001)

    Google Scholar 

  13. Newton, I.: Unpublished Scientific Papers of Isaac Newton (including De gravitatione). Cambridge University Press, Cambridge (1962)

    Google Scholar 

  14. Newton, I.: Sir Isaac Newton’s Mathematical Principles of Natural Philosophy. University of California Press, Berkeley (1962)

    Google Scholar 

  15. Barbour, J.: The nature of time, 2009, Winner of first juried prize essay of The Foundational Questions Institute (fqxi.org). arXiv:0903.3489 [gr-qc]

  16. Lange, L.: Über das Beharrungsgesetz. Ber. Math.-Phys. Classe Königl. Sächs. Ges. Wissensch. (1885)

  17. Tait, P.G.: Note on reference frames. Proc. R. Soc. Edinb. 743–745 (1883–1884)

  18. Mittelstaedt, P.: Klassische Mechanik, 2nd edn. B.I.-Wissenschaftsverlag, Mannheim (1995)

    Google Scholar 

  19. Alexander, H.G. (ed.): The Leibniz–Clarke Correspondence. Manchester University Press, Manchester (1956)

    MATH  Google Scholar 

  20. Herivel, H.G.: The Background to Newton’s Principia. Clarendon, Oxford (1966)

    Google Scholar 

  21. Lanczos, C.: The Variational Principles of Mechanics. University of Toronto Press, Toronto (1949)

    MATH  Google Scholar 

  22. Mittelstaedt, P.: Der Zeitbegriff in der Physik. B.I.-Wissenschaftsverlag, Mannheim (1976)

    Google Scholar 

  23. Barbour, J.: Mach’s Mach’s principles, especially the second. In Grundlagenprobleme der modernen Physik, Festschrift für Peter Mittelstaedt zum 50. Geburtstag, pp. 41–63. B.I.-Wissenschaftsverlag, Mannheim (1981)

    Google Scholar 

  24. Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769–822 (1916)

    Article  Google Scholar 

  25. Kretschmann, E.: Über den physikalischen Sinn der Relativitätspostulate: A. Einstein’s neue und seine ursprüngliche Relativitätstheorie. Ann. Phys. 53, 575–614 (1917)

    Google Scholar 

  26. Lagrange, J.L.: Essai sur le Problème des Trois Corps, Prix de l’Académie Royale des Sciences de Paris, 9 (1772)

  27. Betti, E.: Sopra il moto di un sistema di un numero qualunque di punti che si attraggono o si respingono tra di loro. Ann. Mat. 2(8), 301–311 (1877)

    Article  Google Scholar 

  28. Albouy, A., Chenciner, A.: Le problème des N corps et les distances mutuelles. Invent. Math. 131, 151–184 (1998)

    Article  MATH  ADS  Google Scholar 

  29. O’Raifeartaigh, L.: The Dawning of Gauge Theory. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  30. Barbour, J., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A 382, 295–306 (1982)

    Article  MATH  ADS  Google Scholar 

  31. Saari, D.: Collisons, Rings, and Other Newtonian N-Body Problems. American Mathematical Society, Providence (2005)

    Google Scholar 

  32. Barbour, J., Ó Murchadha, N.: (2010, forthcoming)

  33. Hughes, V.W., Robinson, H.G., Beltran-Lopez, V.: Upper limit for the anisotropy of inertial mass from nuclear magnetic resonance. Phys. Rev. Lett. 4, 342–344 (1960)

    Article  ADS  Google Scholar 

  34. Drever, R.W.P.: A search for anisotropy of inertial mass using a free precession technique. Philos. Mag. 6, 683–687 (1961)

    Article  ADS  Google Scholar 

  35. Barbour, J.: Scale-invariant gravity: particle dynamics. Class. Quantum Gravity 20, 1543–1570 (2003). gr-qc/0211021

    Article  MATH  ADS  Google Scholar 

  36. Barbour, J., Foster, B.Z., Ó Murchadha, N.: Relativity without relativity. Class. Quantum Gravity 19, 3217–3248 (2002). gr-qc/0012089

    Article  MATH  ADS  Google Scholar 

  37. Anderson, E., Barbour, J., Foster, B.Z., Ó Murchadha, N.: Scale-invariant gravity: geometrodynamics. Class. Quantum Gravity 20, 1571 (2003). gr-qc/0211022

    Article  MATH  ADS  Google Scholar 

  38. Anderson, E., Barbour, J., Foster, B.Z., Kelleher, B., Ó Murchadha, N.: The physical gravitational degrees of freedom. Class. Quantum Gravity 22, 1795–1802 (2005). gr-qc/0407104

    Article  MATH  ADS  Google Scholar 

  39. Anderson, E., Barbour, J.: Interacting vector fields in relativity without relativity. Class. Quantum Gravity 19, 3249–3262 (2002). gr-qc/0201092

    Article  MATH  ADS  Google Scholar 

  40. Anderson, E.: On the recovery of geometrodynamics from two different sets of first principles. Stud. Hist. Philos. Mod. Phys. 38, 15 (2007). arXiv:gr-qc/0511070

    Article  Google Scholar 

  41. Anderson, E.: Does relationalism alone control geometrodynamics with sources? (2007). arXiv:0711.0285

  42. Weyl, H.: Gravitation und Elektrizität. Sitzungsber. Preuss. Akad. Berlin, 465–480 (1918)

  43. Weyl, H.: Gravitation and electricity. In: O’Raifeartaigh, L. (ed.) The dawning of gauge theory, pp. 24–37. Princeton University Press, Princeton (1997)

    Google Scholar 

  44. Hořava, P.: Quantum gravity at a Lifshits point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3776 [hep-th]

    Article  ADS  Google Scholar 

  45. Einstein, A.: The Meaning of Relativity. Methuen, London (1922)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Barbour.

Additional information

It is a pleasure to celebrate with this paper the 80th birthday of my Ph.D. supervisor Peter Mittelstaedt, who has taken a life-long interest in Mach’s principle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbour, J. The Definition of Mach’s Principle. Found Phys 40, 1263–1284 (2010). https://doi.org/10.1007/s10701-010-9490-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9490-7

Keywords

Navigation