Advertisement

Foundations of Physics

, Volume 40, Issue 12, pp 1789–1799 | Cite as

Signatures of Noncommutative Geometry in Muon Decay for Nonsymmetric Gravity

  • Dinesh SinghEmail author
  • Nader Mobed
  • Pierre-Philippe Ouimet
Article

Abstract

It is shown how to identify potential signatures of noncommutative geometry within the decay spectrum of a muon in orbit near the event horizon of a microscopic Schwarzschild black hole. This possibility follows from a re-interpretation of Moffat’s nonsymmetric theory of gravity, first published in Phys. Rev. D 19:3554, 1979, where the antisymmetric part of the metric tensor manifests the hypothesized noncommutative geometric structure throughout the manifold. It is further shown that for a given sign convention, the predicted signatures counteract the effects of curvature-induced muon stabilization predicted by Singh and Mobed in Phys. Rev. D 79:024026, 2009. While it is unclear whether evidence for noncommutative geometry may become observable anytime soon, this approach at least provides a useful direction for future quantum gravity research based on the ideas presented here.

Keywords

Spin-1/2 particles in curved space-time Nonsymmetric gravity Noncommutative geometry Muon decay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polchinski, J.: String Theory. Cambridge University Press, Cambridge (1998) CrossRefGoogle Scholar
  2. 2.
    Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1987) zbMATHGoogle Scholar
  3. 3.
    Ashtekar, A.: Phys. Rev. D 36, 1587 (1987) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Ashtekar, A.: Phys. Rev. Lett. 57, 2244 (1986) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004) zbMATHCrossRefGoogle Scholar
  6. 6.
    Connes, A.: Commun. Math. Phys. 192, 155 (1996) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Aschieri, P., Dimitrijevic, M., Meyer, F., Wess, J.: Class. Quantum Gravity 23, 1883 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Snyder, H.S.: Phys. Rev. 71, 38 (1947) zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Nicolini, P.: arXiv:0807.1939v1 [hep-th]
  10. 10.
    Singh, D., Mobed, N.: Class. Quantum Gravity 24, 2453 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Singh, D.: Phys. Rev. D 71, 105003 (2005) CrossRefADSGoogle Scholar
  12. 12.
    Singh, D., Mobed, N., Papini, G.: J. Phys. A 37, 8329 (2004) zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Singh, D., Mobed, N.: Phys. Rev. D 79, 024026 (2009) CrossRefADSGoogle Scholar
  14. 14.
    Rosquist, K.: Class. Quantum Gravity 23, 3111 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Moffat, J.W.: Phys. Rev. D 19, 3554 (1979) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Moffat, J.W.: Phys. Lett. B 355, 447 (1995) zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1973) Google Scholar
  18. 18.
    Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York (1980) Google Scholar
  19. 19.
    Madore, J., et al.: Eur. Phys. J. C 16, 161 (2000) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Chaichian, M., Sheikh-Jabbari, M.M., Tureanu, A.: Phys. Rev. Lett. 86, 2716 (2001) CrossRefADSGoogle Scholar
  21. 21.
    Janssen, T., Prokopec, T.: Class. Quantum Gravity 23, 4967 (2006) zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Janssen, T., Prokopec, T.: J. Phys. A 40, 7067 (2007) CrossRefADSGoogle Scholar
  23. 23.
    Ragusa, S.: Phys. Rev. D 56, 864 (1997) CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Chamseddine, A.H.: Int. J. Mod. Phys. A 16, 759 (2001) zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Kersting, N., Ma, Y.L.: arXiv:hep-ph/0305244
  26. 26.
    Poplawski, N.J.: Mod. Phys. Lett. A 22, 2701 (2007) zbMATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Vacaru, S.: Int. J. Theor. Phys. 48, 1973 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Calmet, X., Kobakhidze, A.: Phys. Rev. D 72, 045010 (2005) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Calmet, X., Kobakhidze, A.: Phys. Rev. D 74, 047702 (2006) CrossRefADSGoogle Scholar
  30. 30.
    Adorno, T.C., et al.: arXiv:0904.2836 [hep-th]

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dinesh Singh
    • 1
    Email author
  • Nader Mobed
    • 1
  • Pierre-Philippe Ouimet
    • 1
  1. 1.Department of PhysicsUniversity of ReginaReginaCanada

Personalised recommendations