Advertisement

Foundations of Physics

, Volume 41, Issue 2, pp 159–177 | Cite as

Pure Quantum Interpretations Are not Viable

  • I. SchmelzerEmail author
Article

Abstract

Pure interpretations of quantum theory, which throw away the classical part of the Copenhagen interpretation without adding new structure to its quantum part, are not viable. This is a consequence of a non-uniqueness result for the canonical operators.

Keywords

Everett interpretation Ithaca interpretation Consistent histories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmelzer, I.: Why the Hamilton operator alone is not enough. Found. Phys. 39, 486–498 (2009). arXiv:0901.3262 zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. London Mathematical Society Lecture Note Series, vol. 149. Cambridge University Press, Cambridge (1991) zbMATHCrossRefGoogle Scholar
  3. 3.
    Bell, J.S.: Beables for quantum field theory. Phys. Rep. 137, 49–54 (1986) CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. Phys. Rev. 85, 166–193 (1952) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    de Broglie, L.: La nouvelle dynamique des quanta, in Electrons et Photons: Rapports et Discussions du Cinquieme Conseil de Physique, ed. J. Bordet, Gauthier-Villars, Paris, pp. 105–132 (1928). English translation in: Bacciagaluppi, G., Valentini, A.: Quantum theory at the crossroads: reconsidering the 1927 Solvay Conference, Cambridge University Press. arXiv:quant-ph/0609184 (2006)
  6. 6.
    Brown, H.R.: Comment on Valentini “De Broglie-Bohm pilot-wave theory: many worlds in denial?” arXiv:0901.1278
  7. 7.
    Brown, H.R., Wallace, D.: Solving the measurement problem: de Broglie-Bohm loses out to Everett. Found. Phys. 35(4), 517 (2005). arXiv:quant-ph/0403094 zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Deutsch, D.: Comment on Lockwood. Br. J. Philos. Sci. 47, 222–228 (1996) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454–462 (1957) CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Ghirardi, G.C.: Collapse theories. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Summer 2002 edition), available online at http://plato.stanford.edu/archives/spr2002/entries/qm-collapse, 2002
  11. 11.
    Ghirardi, G., Rimini, A., Weber, T.: Unified dynamics for micro and macro systems. Phys. Rev. D 34, 470–491 (1986) CrossRefMathSciNetADSzbMATHGoogle Scholar
  12. 12.
    Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(12), 219–272 (1984) zbMATHCrossRefADSGoogle Scholar
  13. 13.
    Griffiths, R.B.: Quantum mechanics without measurements. arXiv:quant-ph/0612065 (2006)
  14. 14.
    Kent, A.: Real world interpretations of quantum theory. arXiv:0708.3710 (2007)
  15. 15.
    Mermin, N.D.: The Ithaca interpretation of quantum mechanics. Pramana 51, 549–565 (1998). arXiv:quant-ph/9609013 CrossRefADSGoogle Scholar
  16. 16.
    Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966) CrossRefADSGoogle Scholar
  17. 17.
    Saunders, S.: Time, decoherence and quantum mechanics. Synthese 102, 235–266 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Schmelzer, I.: A condensed matter interpretation of sm fermions and gauge fields. Found. Phys. 39(1), 73 (2009). arXiv:0908.0591 zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Tegmark, M.: The mathematical universe. Found. Phys. 38, 101–150 (2008) zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Valentini, A.: De Broglie-Bohm pilot-wave theory: many worlds in denial? In: [22]. arXiv:0811.0810
  21. 21.
    Brown, H.R.: Comment on Valentini “De Broglie-Bohm pilot-wave theory: many worlds in denial?” In: [22]. arXiv:0901.1278
  22. 22.
    Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Realism, Everett, and Quantum Mechanics. University Press, Oxford (2009) Google Scholar
  23. 23.
    Wallace, D.: Worlds in the Everett interpretation, studies in the history and philosophy of modern. Physics 33, 637–661 (2002). arXiv:quant-ph/0103092 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Weinberg, S.: Living in the multiverse. arXiv:hep-th/0511037v1
  25. 25.
    Zeh, H.D.: Why Bohms quantum theory? arXiv:quant-ph/9812059
  26. 26.
    An exchange of letters in Physics Today on “Quantum theory without observers”, February 1999. www.math.rutgers.edu/~oldstein/papers/qtwoe/qtwoe.html

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.BerlinGermany

Personalised recommendations