Advertisement

Foundations of Physics

, Volume 40, Issue 9–10, pp 1625–1637 | Cite as

Why Conceptual Rigour Matters to Philosophy: on the Ontological Significance of Algebraic Quantum Field Theory

  • Meinard Kuhlmann
Article

Abstract

I argue that algebraic quantum field theory (AQFT) permits an undisturbed view of the right ontology for fundamental physics, whereas standard (or Lagrangian) QFT offers different mutually incompatible ontologies. My claim does not depend on the mathematical inconsistency of standard QFT but on the fact that AQFT has the same concerns as ontology, namely categorical parsimony and a clearly structured hierarchy of entities.

Keywords

Algebraic quantum field theory Ontology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, D.J.: Against field interpretations of quantum field theory. Br. J. Philos. Sci. 60, 585–609 (2009) MATHCrossRefADSGoogle Scholar
  2. 2.
    Baumgärtel, H., Wollenberg, M.: Causal Nets of Operator Algebras—Mathematical Aspects of Algebraic Quantum Field Theory. Akademie-Verlag, Berlin (1992) MATHGoogle Scholar
  3. 3.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1: C -and W -Algebras, Symmetry Groups, Decomposition of States. Springer, New York (1979) Google Scholar
  4. 4.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium states, models in quantum statistical mechanics. Springer, New York (1981) Google Scholar
  5. 5.
    Buchholz, D.: Current trends in axiomatic quantum field theory. In: Breitenlohner, P., Maison, D., (eds.) Quantum Field Theory. Proceedings of the Ringberg Workshop Held at Tegernsee, Germany, 21–24 June 1998 on the Occasion of Wolfhart Zimmermann’s 70th Birthday. Lecture Notes in Physics, vol. 558, pp. 43–64. Springer, Berlin (2000) CrossRefGoogle Scholar
  6. 6.
    Butterfield, J., Halvorson, H. (eds.): Quantum Entanglements—Selected Papers—Rob Clifton. Oxford University Press, Oxford (2004) Google Scholar
  7. 7.
    Cao, T.Y.: Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge (1997) MATHCrossRefGoogle Scholar
  8. 8.
    Carnap, R.: Überwindung der Metaphysik durch logische Analyse der Sprache. Erkenntnis 2, 219–241 (1931). (Engl. transl.: The elimination of metaphysics through logical analysis of language. In Ayer, A. J., editor, Logical Positivism, Free Press, Glencoe, Ill. Allen & U., London 1959) MATHCrossRefGoogle Scholar
  9. 9.
    Clifton, R., Halvorson, H.: No place for particles in relativistic quantum theories? Philos. Sci. 69, 1–28 (2002) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Earman, J., Fraser, D.: Haag’s theorem and its implications for the foundations of quantum field theory. Erkenntnis 64, 305–344 (2006) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fraser, D.: The fate of ‘particles’ in quantum field theories with interactions. Stud. Hist. Philos. Sci., Part B 39, 841–859 (2008) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Fraser, D.: Quantum field theory: underdetermination, inconsistency, and idealization. Philos. Sci. 76, 536–567 (2009) CrossRefGoogle Scholar
  13. 13.
    Haag, R.: Local Quantum Physics: Fields, Particles, Algebras, 2nd edn. Springer, Berlin (1996) MATHGoogle Scholar
  14. 14.
    Halvorson, H., Müger, M.: Algebraic quantum field theory (with an appendix by Michael Müger). In: Butterfield, J., Earman, J. (eds.) Handbook of the Philosophy of Physics—Part A, pp. 731–922. Elsevier, Amsterdam (2007) Google Scholar
  15. 15.
    Horuzhy, S.S.: Introduction to Algebraic Quantum Field Theory, 1st edn. Kluwer Academic, Dordrecht (1990) MATHGoogle Scholar
  16. 16.
    Kuhlmann, M.: Formal aspects of the particle concept. In: Gonis, T., Turchi, P.E.A. (eds.) Decoherence and its Implications in Quantum Computation and Information Transfer, pp. 83–97. IOS Press, Amsterdam (2001) Google Scholar
  17. 17.
    Kuhlmann, M.: (2009). Quantum field theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Spring 2009 edition Google Scholar
  18. 18.
    Kuhlmann, M.: (2010). The ultimate constituents of the material world—in search of an ontology for fundamental physics Google Scholar
  19. 19.
    Landsman, N.P.: Local quantum physics. Stud. Hist. Philos. Mod. Phys. 27, 511–525 (1996) CrossRefMathSciNetGoogle Scholar
  20. 20.
    MacKinnon, E.: The standard model as a philosophical challenge. Philos. Sci. 75, 447–457 (2008) CrossRefMathSciNetGoogle Scholar
  21. 21.
    Rédei, M., Summers, S.J.: Local primitive causality and the common cause principle in quantum field theory. Found. Phys. 32, 335–355 (2002) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Redhead, M.L.G.: Symmetry in intertheory relations. Synthese 32, 77–112 (1975) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Redhead, M.L.G.: More ado about nothing. Found. Phys. 25, 123–137 (1995) CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Redhead, M.L.G.: The vacuum in relativistic quantum field theory. In: Hull, D., Burian, R.M. (eds.) Proceedings of the 1994 Biennial Meeting of the Philosophy of Science Association (“PSA 1994”), vol. 2, pp. 88–89. Philosophy of Science Association, East Lansing (1995) Google Scholar
  25. 25.
    Roberts, J.E.: Lectures on algebraic quantum field theory. In: Kastler, D. (ed.): The Algebraic Theory of Superselection Sectors. Introduction and Recent Results, pp. 1–112. World Scientific, Singapore (1990) Google Scholar
  26. 26.
    Ruetsche, L.: A matter of degree: Putting unitary equivalence to work. Philos. Sci. 70(5), 1329–1342 (2003) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Saunders, S.: The algebraic approach to quantum field theory. In: Brown, H.R., Harré, R. (eds.) Philosophical Foundations of Quantum Field Theory, pp. 149–183. Clarendon, Oxford (1988) Google Scholar
  28. 28.
    Saunders, S., Brown, H.R. (eds.): The Philosophy of Vacuum. Clarendon, Oxford (1991) Google Scholar
  29. 29.
    Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. The University of Chicago Press, Chicago (1994) MATHGoogle Scholar
  30. 30.
    Wallace, D.: In defense of naiveté: the conceptual status of Lagrangian quantum field theory. Synthese 151, 33–80 (2006) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of BremenBremenGermany

Personalised recommendations