Foundations of Physics

, Volume 40, Issue 6, pp 658–678 | Cite as

A Relativistic Hidden-Variable Interpretation for the Massive Vector Field Based on Energy-Momentum Flows



This paper is motivated by the desire to formulate a relativistically covariant hidden-variable particle trajectory interpretation of the quantum theory of the vector field that is formulated in such a way as to allow the inclusion of gravity. We present a methodology for calculating the flows of rest energy and a conserved density for the massive vector field using the time-like eigenvectors and eigenvalues of the stress-energy-momentum tensor. Such flows may be used to define particle trajectories which follow the flow. This work extends our previous work which used a similar procedure for the scalar field. The massive, spin-one, complex vector field is discussed in detail and the flows of energy-momentum are illustrated in a simple example of standing waves in a plane.


Hidden variable de Broglie Bohm Massive vector field Stress energy momentum tensor Eigen vectors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tumulka, R.: The “unromantic pictures” of quantum theory. J. Phys. A, Math. Gen. 40, 3245–3273 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Horton, G., Dewdney, C., Ne’eman, U.: de Broglie’s Pilot-Wave theory for the Klein-Gordon equation and its space-time pathologies. Found. Phys. 32, 463–476 (2002) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Nikolic, H.: Relativistic Bohmian interpretation of quantum mechanics. Found. Phys. Lett. 18, 549–561 (2005) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Horton, G., Dewdney, C.: A relativistically covariant version of Bohm’s quantum field theory for the scalar field. J. Phys. A, Math. Gen. 37, 11935–11943 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Struyve, W.: Field beables for quantum field theory. arXiv:0707.3685v1 [quant-ph], 25 Jul (2007)
  6. 6.
    Ashtekar, A., Magnon, A.: Quantum fields in curved space-time. Proc. R. Soc. Lond. A 346, 375–394 (1975) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Wald, R.M.: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994) Google Scholar
  8. 8.
    Horton, G., Dewdney, C., Nesteruk, A.: Time-like flows of energy momentum and particle trajectories for the Klein-Gordon equation. J. Phys. A, Math. Gen. 33, 7337–7352 (2000) MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Edelen, D.G.B.: On the foundations of relativistic energy mechanics. Nuovo Cimento 30, 292 (1963) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D’Inverno, R.: Introducing Einstein’s Relativity, p. 164. Oxford University Press, London (1992) MATHGoogle Scholar
  11. 11.
    Gambini, R., Pullin, J.: Loops, Knots, Guage Theories and Quantum Gravity, pp. 164–178. Cambridge University Press, Cambridge (1996) CrossRefGoogle Scholar
  12. 12.
    Ashtekar, A.: Lectures on Non-perturbative Canonical Gravity. Advanced series in Astrophysics and Cosmology, vol. 6. World Scientific, Singapore (1991) MATHGoogle Scholar
  13. 13.
    Horton, G., Dewdney, C.: A non-local, Lorentz-invariant, hidden-variable interpretation of relativistic quantum mechanics based on particle trajectories. J. Phys. A, Math. Gen. 34, 9871–9878 (2001) MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Dewdney, C., Horton, G.: Relativistically invariant extension of the de Broglie-Bohm theory of quantum mechanics. J. Phys. A, Math. Gen. 35, 10117–10127 (2002) MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Berndl, K., Dürr, D., Goldstein, S., Zanghì, N.: Nonlocality, Lorentz invariance, and Bohmian quantum theory. Phys. Rev. A 53, 2062–2073 (1996) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Barut, A.O.: Electrodynamics and Classical Theory of Fields and Particles, p. 144. Dover, New York (1980) Google Scholar
  17. 17.
    Kuchiev, M.Yu., Flambaum, V.V.: Coulomb problem for vector bosons. Phys. Rev. D 73, 093009 (2006) CrossRefADSGoogle Scholar
  18. 18.
    Schweber, S.S.: Introduction to Relativistic Quantum Field Theory. Harper, New York (1961) Google Scholar
  19. 19.
    Synge, J.L.: Relativity the Special Theory. North-Holland, Amsterdam (1965) Google Scholar
  20. 20.
    Ruse, H.S.: On the geometry of the electromagnetic field in general relativity. Proc. Lond. Math. Soc. 41, 302–322 (1936) MATHCrossRefGoogle Scholar
  21. 21.
    Misner, C., Wheeler, J.A.: Classical physics as geometry. Ann. Phys. 2, 525–603 (1957) MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Garat, A.: Tetrads in geometrodynamics. J. Math. Phys. 46, 102502 (2005) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Penrose, R., Rindler, W.: Spinors and Space-Time, p. 119. CUP, Cambridge (1984) MATHCrossRefGoogle Scholar
  24. 24.
    Dewdney, C., Horton, G., Lam, M.M., Malik, Z., Schmidt, M.: Wave-particle dualism and the interpretation of quantum mechanics. Found. Phys. 22, 1217–1265 (1992) CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Itzykson, C., Zuber, J.B.: Quantum Field Theory, p. 134. McGraw-Hill, New York (1992) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.SEESUniversity of PortsmouthPortsmouthUK

Personalised recommendations