Foundations of Physics

, Volume 41, Issue 3, pp 529–537 | Cite as

Itô’s Lemma with Quantum Calculus (q-Calculus): Some Implications

  • Emmanuel Haven


q-derivatives are part of so called quantum calculus. In this paper we investigate how such derivatives can possibly be used in Itô’s lemma. This leads us to consider how such derivatives can be used in a social science setting. We conclude that in a Itô Lemma setting we cannot use a macroscopic version of the Heisenberg uncertainty principle with q-derivatives.


q-calculus q-derivatives Itô’s lemma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kac, V., Cheung, P.: Quantum Calculus. Springer, Berlin (2002) MATHCrossRefGoogle Scholar
  2. 2.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  3. 3.
    Andrews, G.E.: q-series: their development and application in analysis, number theory, combinatorics, physics and computer algebra. In: CBMS Regional Conference Lecture. Series in Mathematics, vol. 66. Am. Math. Soc., Providence (1986) Google Scholar
  4. 4.
    Haven, E.: Quantum calculus (q-calculus) and option pricing: a brief introduction. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K. (eds.) Quantum Interaction. Lect. Notes in Artificial Intelligence, vol. 5494, pp. 308–314. Springer, Berlin (2009) CrossRefGoogle Scholar
  5. 5.
    Accardi, L., Boukas, A.: The quantum Black-Scholes equation. Glob. J. Pure Appl. Math. 2, 155–170 (2007) MathSciNetGoogle Scholar
  6. 6.
    Hudson, R.L., Parthasarathy, K.R.: Quantum Itô’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984) MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Meyer, P.A.: Quantum probability for probabilists, Lect. Notes in Math., vol. 1538 (1993) Google Scholar
  8. 8.
    Aerts, D.: Quantum structure in cognition. J. Math. Psychol. 53, 314–348 (2009) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane, M., Khrennikov, A., Zbilut, J.P.: Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics. Chaos Solitons Fractals 31, 1076–1088 (2006) CrossRefADSGoogle Scholar
  10. 10.
    Grib, A., Khrennikov, A., Parfionov, J., Starkov, K.: Quantum equilibrium for macroscopic systems. J. Phys. A, Math. Gen. 39, 8461–8475 (2006) MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Khrennikov, A.: Information Dynamics in Cognitive, Psychological and Anomalous Phenomena, Ser. Fundamental Theories of Physics, vol. 138. Kluwer, Dordrecht (2004) MATHGoogle Scholar
  12. 12.
    Choustova, O.: Toward quantum-like modelling of financial processes. J. Phys. Conf. Ser. 70 (2007) Google Scholar
  13. 13.
    Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität Würzburg, Germany (1988) Google Scholar
  14. 14.
    Hilger, S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990) MATHMathSciNetGoogle Scholar
  15. 15.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Basel (2001) MATHGoogle Scholar
  16. 16.
    Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Basel (2003) MATHCrossRefGoogle Scholar
  17. 17.
    Davis, J.M., Gravagne, I.A., Jackson, B.J., Marks II, R.J., Ramos, A.A.: The Laplace transform on time scales revisited. J. Math. Anal. Appl. 332, 1291–1307 (2007) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Itô, K.: On stochastic differential equations. Mem. Am. Math. Soc. 4, 1–51 (1951) Google Scholar
  19. 19.
    Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (1992) Google Scholar
  20. 20.
    Brzeźniak, Z., Zastawniak, T.: Basic Stochastic Processes. Springer, Berlin (1999) MATHCrossRefGoogle Scholar
  21. 21.
    Wilmott, P.: Derivatives: The Theory and Practice of Financial Engineering. Wiley, New York (1999) Google Scholar
  22. 22.
    Baaquie, B.: Quantum Finance. Cambridge University Press, Cambridge (2004) MATHCrossRefGoogle Scholar
  23. 23.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973) CrossRefGoogle Scholar
  24. 24.
    McDonald, R.L.: Derivatives Markets. Addison-Wesley, Reading (2003) Google Scholar
  25. 25.
    Baez, J.: This week’s finds in Mathematical Physics (Week 183).
  26. 26.
    Segal, W., Segal, I.E.: The Black-Scholes pricing formula in the quantum context. Proc. Natl. Acad. Sci. USA 95, 4072–4075 (1998) MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of ManagementUniversity of LeicesterLeicesterUK

Personalised recommendations