Foundations of Physics

, Volume 40, Issue 8, pp 1096–1101 | Cite as

Isomorphism between the Peres and Penrose Proofs of the BKS Theorem in Three Dimensions

  • Elizabeth Gould
  • P. K. Aravind


It is shown that the 33 complex rays in three dimensions used by Penrose to prove the Bell-Kochen-Specker theorem have the same orthogonality relations as the 33 real rays of Peres, and therefore provide an isomorphic proof of the theorem. It is further shown that the Peres and Penrose rays are just two members of a continuous three-parameter family of unitarily inequivalent rays that prove the theorem.


Kochen-Specker theorem Bell’s theorem Foundations of quantum mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peres, A.: Two simple proofs of the Kochen-Specker theorem. J. Phys. A, Math. Gen. 24, L175 (1991) CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966) MATHCrossRefADSGoogle Scholar
  3. 3.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–88 (1967) MATHMathSciNetGoogle Scholar
  4. 4.
    Penrose, R.: On Bell non-locality without probabilities: some curious geometry. In: Ellis, J., Amati, D. (eds.) Quantum Reflections. Cambridge University Press, Cambridge (2000) Google Scholar
  5. 5.
    Zimba, J., Penrose, R.: On Bell non-locality without probabilities: more curious geometry. Stud. Hist. Philos. Sci. 24, 697–720 (1993) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Penrose, R.: Shadows of the Mind. Oxford University Press, Oxford (1994), Chap. 5 Google Scholar
  7. 7.
    Zimba, J.: Anticoherent spin states via the Majorana representation. Electron. J. Theor. Phys. 3, 143–156 (2006) MATHGoogle Scholar
  8. 8.
    Bub, J.: Schutte’s tautology and the Kochen-Specker theorem. Found. Phys. 26, 787–806 (1996) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997), Chap. 3 MATHGoogle Scholar
  10. 10.
    Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313–3316 (2000) CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Svozil, K.: Bertlmann’s chocolate balls and quantum type cryptography. arXiv:0903.0231 (2009)
  12. 12.
    Cabello, A.: Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101, 210401 (2008) CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Badziag, P., Bengtsson, I., Cabello, A., Pitowsky, I.: Phys. Rev. Lett. 103, 050401 (2009) CrossRefADSGoogle Scholar
  14. 14.
    Kirchmair, G., Zähringer, F., Gerritsma, R., Kleinmann, M., Gühne, O., Cabello, A., Blatt, R., Roos, C.F.: State-independent experimental test of quantum contextuality. Nature (London) 460, 494 (2009) CrossRefADSGoogle Scholar
  15. 15.
    Bartosik, H., Klepp, J., Schmitzer, C., Sponar, S., Cabello, A., Rauch, H., Hasegawa, Y.: Phys. Rev. Lett. 103, 040403 (2009) CrossRefADSGoogle Scholar
  16. 16.
    Amselem, E., Radmark, M., Bourennane, M., Cabello, A.: State-independent quantum contextuality with single photons. Phys. Rev. Lett. 103, 160405 (2009) CrossRefADSGoogle Scholar
  17. 17.
    Svozil, K.: Three criteria for quantum random-number generators based on beam splitters. Phys. Rev. A 79, 054306 (2009) CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Spekkens, R.W., Buzacott, D.H., Keehn, A.J., Toner, B., Pryde, G.J.: Preparation contextuality powers parity-oblivious multiplexing. Phys. Rev. Lett. 102, 010401 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Physics DepartmentWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations