Skip to main content
Log in

Spatial Localization in Quantum Theory Based on qr-numbers

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We show how trajectories can be reintroduced in quantum mechanics provided that its spatial continuum is modelled by a variable real number (qr-number) continuum. Such a continuum can be constructed using only standard Hilbert space entities. In this approach, the geometry of atoms and subatomic objects differs from that of classical objects. The systems that are non-local when measured in the classical space-time continuum may be localized in the quantum continuum. We compare trajectories in this new description of space-time with the corresponding Bohmian picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adelman, M., Corbett, J.V.: Appl. Categ. Struct. 3, 79 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adelman, M., Corbett, J.V.: Quantum mechanics as an intuitionistic form of classical mechanics. In: Proceedings of the Centre Mathematics and Its Applications, pp. 15–29. ANU, Canberra (2001)

    Google Scholar 

  3. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, pp. 117–118. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  4. Bitbol, M.: Are there particles and quantum jumps? In: Nair, R. (ed.) Mind, Matter and Mystery, pp. 52–53. Scientia, New Delhi (2001)

    Google Scholar 

  5. Bohm, D.: Quantum Theory. Prentice Hall, Englewood Cliffs (1951)

    Google Scholar 

  6. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. Phys. Rev. 85, 166 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bohr, N.: Ueber die Antwendung der Quantentheorie auf den Atombau. I. Die Grundpostulate der Quantentheorie. Z. Phys. 13, 118 (1923)

    ADS  Google Scholar 

  8. Corbett, J.V.: The mathematical structure of quantum-real numbers. Preprint, arXiv:0905.0944 v1 [math-ph], 7 May 2009

  9. Corbett, J.V., Durt, T.: Quantum mechanics interpreted in qr-numbers (2002). arXiv:quant-ph/0211180

  10. Corbett, J.V., Durt, T.: Quantum mechanics as a space-time theory (2005). Preprint arXiv:quant-ph/0512220 v1, 23 Dec 2005

  11. Corbett, J.V., Durt, T.: Collimation processes in quantum mechanics interpreted in quantum real numbers. In: Studies in History and Philosophy of Modern Physics, vol. 40, pp. 68–83 (2009)

  12. da Costa, N.C.A., Krause, D., French, S.: The Schroedinger problem. In: Bitbol, M., Darrigol, O. (eds.) Erwin Schroedinger, Philosophy and the Birth of Quantum Mechanics, pp. 450–453. Frontieres, Paris (1992)

    Google Scholar 

  13. Dieks, D.: Space and time in particle and field physics. Stud. Hist. Philos. Mod. Phys. 32, 217–241 (2001)

    Article  MathSciNet  Google Scholar 

  14. Durt, T.: From quantum to classical, a toy model. PhD thesis, Vrije Universiteit Brussel (1996)

  15. Durt, T., Pierseaux, Y.: Bohm’s interpretation and maximally entangled states. Phys. Rev. A 66, 052109–052120 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  16. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  17. Filk, T.: Relational interpretation of the wave function and a possible way around Bell’s theorem. Int. J. Theor. Phys. 45(6), 1166–1180 (2006)

    Article  MathSciNet  Google Scholar 

  18. Hartshorne, R.: Geometry: Euclid and Beyond. Springer, New York (2000)

    MATH  Google Scholar 

  19. Jauch, J.M.: Foundations of Quantum Mechanics, pp. 275–280. Addison-Wesley, Reading (1968)

    MATH  Google Scholar 

  20. Lévy-Leblond, J.-L.: Galilei group and Galilean invariance. In: Loebl, E.M. (ed.) Group Theory and Its Applications, pp. 221–299. Academic Press, New York (1971)

    Google Scholar 

  21. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, New York (1994)

    Google Scholar 

  22. Mandel, L.: Indistinguishability in One-Photon and Two-Photon Interference. Founds. Phys. 25(2), 211–228 (1995)

    Article  ADS  Google Scholar 

  23. Mulvey, C.: Intuitionistic algebra and representation of rings. Mem. Am. Math. Soc. 148, 3–57 (1974)

    MATH  MathSciNet  Google Scholar 

  24. Reed, M., Simon, B.: Functional Analysis. Methods of Modern Mathematical Physics, vol. 1, p. 199. Academic Press, New York (1972)

    MATH  Google Scholar 

  25. Stout, L.N.: Cah. Topol. Geom. Differ. XVII, 295 (1976)

    MathSciNet  Google Scholar 

  26. Weigert, S.: Quantum time evolution in terms of nonredundant expectation values. Phys. Rev. Lett. 84(5), 802–805 (1999)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Durt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbett, J., Durt, T. Spatial Localization in Quantum Theory Based on qr-numbers. Found Phys 40, 607–628 (2010). https://doi.org/10.1007/s10701-010-9424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9424-4

Keywords

Navigation