Skip to main content
Log in

Formalism and Interpretation in Quantum Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Quantum Mechanics can be viewed as a linear dynamical theory having a familiar mathematical framework but a mysterious probabilistic interpretation, or as a probabilistic theory having a familiar interpretation but a mysterious formal framework. These points of view are usually taken to be somewhat in tension with one another. The first has generated a vast literature aiming at a “realistic” and “collapse-free” interpretation of quantum mechanics that will account for its statistical predictions. The second has generated an at least equally large literature aiming to derive, or at any rate motivate, the formal structure of quantum theory in probabilistically intelligible terms. In this paper I explore, in a preliminary way, the possibility that these two programmes have something to offer one another. In particular, I show that a version of the measurement problem occurs in essentially any non-classical probabilistic theory, and ask to what extent various interpretations of quantum mechanics continue to make sense in such a general setting. I make a start on answering this question in the case of a rudimentary version of the Everett interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer, Berlin (1971)

    MATH  Google Scholar 

  2. Araki, H.: On a characterization of the state space of quantum mechanics. Commun. Math. Phys. 75, 1–24 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Baker, D.: Measurement outcomes and probability in Everettian quantum mechanics. Stud. Hist. Philos. Mod. Phys. 38, 153–169 (2007)

    Article  Google Scholar 

  4. Barnum, H., Fuchs, C., Renes, J., Wilce, A.: Influence-free states on compound quantum systems. quant-ph/0507108 (2005)

  5. Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Cloning and broadcasting in generic probabilistic models. quant-ph/0611295 (2006)

  6. Barrett, J.: Information processing in general probabilistic theories. Phys. Rev. A 75, 032304 (2007). (On-line as quant-ph/0508211, 2006)

    Article  ADS  Google Scholar 

  7. Bell, J.: Against ‘measurement’. Phys. World 33–41 (1990)

  8. Brassard, G.: Is information the key? Nat. Phys. 1, 2–4 (2005)

    Article  Google Scholar 

  9. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  10. Bub, J., Clifton, R.: A uniqueness theorem for interpretations of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 27, 181–219 (1996)

    Article  MathSciNet  Google Scholar 

  11. Bub, J., Clifton, R., Halvorson, H.: Characterizing quantum theory in terms of information-theoretic constraints. Found. Phys. 33, 1561–1591 (2003)

    Article  MathSciNet  Google Scholar 

  12. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MATH  Google Scholar 

  13. Christensen, E.: Measures on projections and physical states. Commun. Math. Phys. 86, 529–538 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Cooke, R., Hilgevoord, J.: A new approach to equivalence in quantum logic. In: Beltrametti, E., van Fraassen, B. (eds.) Current Issues in Quantum Logic. Plenum, New York (1981)

    Google Scholar 

  15. D’Ariano, G.: Operational axioms for C *-algebraic formulation of quantum mechanics. quant-ph/0701209 (2007)

  16. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17, 239–260 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Dieks, D.: Quantum mechanics without the projection postulate. Found. Phys. 19, 1397–1423 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  18. Edwards, C.M.: The operational approach to algebraic quantum theory I. Commun. Math. Phys. 16, 207–230 (1970)

    Article  MATH  ADS  Google Scholar 

  19. Everett III, H.: The theory of the universal wave function. In: DeWitt, B.S., Graham, N. (eds.) The Many Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)

    Google Scholar 

  20. Foulis, D.J., Randall, C.H.: Empirical logic and tensor products. In: Neumann, H. (ed.) Interpretations and Foundations of Quantum Mechanics. Bibliographisches Institut, Mannheim (1981)

    Google Scholar 

  21. Foulis, D.J., Piron, C., Randall, C.H.: Realism, operationalism and quantum mechanics. Found. Phys. 13, 813–841 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  22. Fuchs, C.: Quantum Mechanics as quantum information, mostly. J. Mod. Opt. 50, 987–1023 (2003)

    MATH  ADS  Google Scholar 

  23. Gleason, A.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–893 (1957)

    MATH  MathSciNet  Google Scholar 

  24. Goyal, P.: Information-theoretic approach to quantum theory, I: the abstract quantum formalism. quant-ph/0702124 (2007)

  25. Halvorson, H.: A note on information theoretic characterizations of physical theories. Stud. Hist. Philos. Mod. Phys. 35, 277293 (2004)

    Google Scholar 

  26. Halvorson, H.: No eliminative materialism, no measurement problem. Preprint (2005)

  27. Hardy, L.: Quantum theory from five reasonable axioms. quant-ph/0101012

  28. Holevo, A.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  29. Kläy, M.: Einstein-Podolski-Rosen experiments: the structure of the sample space. Found. Phys. Lett. 1, 205–244 (1988)

    Article  MathSciNet  Google Scholar 

  30. Kläy, M., Randall, C.H., Foulis, D.J.: Tensor products and probability weights. Int. J. Theor. Phys. 26, 199–219 (1987)

    Article  MATH  Google Scholar 

  31. Kochen, S.: A new interpretation of quantum mechanics. In: Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics. World Scientific, Singapore (1985)

    Google Scholar 

  32. Ludwig, G.: An Axiomatic Basis for Quantum Mechanics, vols. I, II. Springer, Berlin (1985)

    Google Scholar 

  33. Mackey, G.: Mathematical Foundations of Quantum Mechanics. Addison Wesley, Reading (1963)

    MATH  Google Scholar 

  34. Namioka, I., Phelps, R.R.: Tensor products of compact convex sets. Pac. J. Math. 9, 469–480 (1969)

    MathSciNet  Google Scholar 

  35. Pitowski, I.: Quantum mechanics as a theory of probability. quant-ph/0510095 (2005)

  36. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379–385 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  37. Rau, J.: On quantum vs. classical probability. arXiv:0710.2119 (2007)

  38. Ruetsche, L.: Van Fraassen on preparation and measurement. Philos. Sci. 63, S338–S346 (1996)

    Article  MathSciNet  Google Scholar 

  39. Shultz, F.W.: A characterization of the state spaces of orthomodular lattices. J. Comb. Theory Ser. A 17, 317–328 (1974)

    Article  MathSciNet  Google Scholar 

  40. Spekkens, R.: In defense of the epistemic view of quantum states: a toy theory. quant-ph/0401052 (2005)

  41. Tran, Q., Wilce, A.: Covariance in quantum logic. Int. J. Theor. Phys. 47, 15–25 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. van Fraassen, B.: Quantum Mechanics: an Empiricist View. Oxford University Press, London (1991)

    Google Scholar 

  43. Varadarajan, V.S.: The Geometry of Quantum Theory. Springer, Berlin (1989)

    Google Scholar 

  44. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  45. Wallach, N.: An unentangled Gleason’s Theorem. Preprint arXiv:quant-ph/0002058 (2000)

  46. Wilce, A.: The tensor product of frame manuals. Int. J. Theor. Phys. 29, 805–814 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  47. Wilce, A.: Tensor products in generalized measure theory. Int. J. Theor. Phys. 31, 1915–1928 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  48. Wilce, A.: Quantum logic and quantum probability. In: Stanford Encyclopedia of Philosophy, February 2002

  49. Wilce, A.: Symmetry and topology in quantum logic. Int. J. Theor. Phys. 44, 2303–2316 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  50. Wilce, A.: Test spaces. In: Gabbay, D., Engesser, K., Lehman, D. (eds.) The Handbook of Quantum Logic, vol. II. Elsevier, Amsterdam (2009)

    Google Scholar 

  51. Wright, R.: Spin manuals. In: Marlow, A.R. (ed.) Mathematical Foundations of Quantum Theory. Academic Press, San Diego (1978)

    Google Scholar 

  52. Yeadon, F.J.: Finitely additive measures on projections in finite W *-algebras. Bull. Lond. Math. Soc. 16, 145–150 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Wilce.

Additional information

For Jeffrey Bub on his 65th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilce, A. Formalism and Interpretation in Quantum Theory. Found Phys 40, 434–462 (2010). https://doi.org/10.1007/s10701-010-9410-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9410-x

Keywords

Navigation