Skip to main content
Log in

The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Lagrangian and Hamiltonian properties of classical electrodynamics models and their associated Dirac quantizations are studied. Using the vacuum field theory approach developed in (Prykarpatsky et al. Theor. Math. Phys. 160(2): 1079–1095, 2009 and The field structure of a vacuum, Maxwell equations and relativity theory aspects. Preprint ICTP) consistent canonical Hamiltonian reformulations of some alternative classical electrodynamics models are devised, and these formulations include the Lorentz condition in a natural way. The Dirac quantization procedure corresponding to the Hamiltonian formulations is developed. The crucial importance of the rest reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized. A concise expression for the Lorentz force is derived by suitably taking into account the duality of electromagnetic field and charged particle interactions. Finally, a physical explanation of the vacuum field medium and its relativistic properties fitting the mathematical framework developed is formulated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.: Foundations of Mechanics. The Benjamin/Cummings, Reading (1978)

    MATH  Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    MATH  Google Scholar 

  3. Barbashov, B.M.: On the canonical treatment of Lagrangian constraints. arXiv:hep-th/0111164 (2001)

  4. Barbashov B.M, Pervushin, V.N., Zakharov, A.F., Zinchuk, V.A.: The Hamiltonian approach to general relativity and CNB-primordal spectrum. arXiv:hep-th/0606054 (2006)

  5. Bialynicky-Birula, I.: Phys. Rev. 155, 1414 (1967)

    Article  ADS  Google Scholar 

  6. Bialynicky-Birula, I.: Phys. Rev. 166, 1505 (1968)

    Article  ADS  Google Scholar 

  7. Bogolubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. Nauka, Moscow (1984)

    Google Scholar 

  8. Bogolubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. Interscience, New York (1959)

    Google Scholar 

  9. Bogolubov, N.N. Jr., Prykarpatsky, A.K., Taneri, U., Prykarpatsky, Y.A.: The electromagnetic Lorentz condition problem and symplectic properties of Maxwell- and Yang–Mills-type dynamical systems. J. Phys. A: Math. Theor. 42, 165401 (2009) (16pp)

    Article  MathSciNet  ADS  Google Scholar 

  10. Brans, C.H., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Brillouin, L.: Relativity Reexamined. Academic Press, New York/London (1970)

    Google Scholar 

  12. Bulyzhenkov, I.E.: Einstein’s curvature for nonlocal gravitation of Gesamt energy carriers. arXiv:math-ph/0603039 (2008)

  13. Bulyzhenkov-Widicker, I.E.: Einstein’s gravitation for Machian relativism of nonlocal energy charges. Int. J. Theor. Phys. 47, 1261–1269 (2008)

    Article  MATH  Google Scholar 

  14. Deser, S., Jackiw, R.: Time travel? arXiv:hep-th/9206094 (1992)

  15. Dirac, P.A.M.: Quantum theory of emission and absorption of radiation. Proc. R. Soc. A 114, 243 (1927)

    Article  ADS  Google Scholar 

  16. Dirac, P.A.M.: The Principles of Quantum Mechanics, 2nd edn. Clarendon Press, Oxford (1935)

    Google Scholar 

  17. Dirac, P.A.M., Fock, W.A., Podolsky, B.: Phys. Z. Sowiet. 2, 468 (1932)

    MATH  Google Scholar 

  18. Dirac, P.A.M.: Gauge-invariant formulation of quantum electrodynamics. Can. J. Phys. 33, 650 (1955)

    MATH  MathSciNet  Google Scholar 

  19. Dunner, G., Jackiw, R.: “Peierles substitution” and Chern-Simons quantum mechanics. arXiv:hep-th/9204057 (1992)

  20. Faddeev, L.D.: Energy problem in the Einstein gravity theory. Rus. Phys. Surv. 136(3), 435–457 (1982) (in Russian)

    MathSciNet  ADS  Google Scholar 

  21. Feynman, R.P.M.: Lectures on gravitation. Notes of California Inst. of Technology (1971)

  22. Feynman, R.P.M., Leighton, R., Sands, M.: The Feynman Lectures on Physics. Electrodynamics, vol. 2. Addison-Wesley, Reading (1964)

    Google Scholar 

  23. Gill, T.L., Zachary, W.W.: Two mathematically equivalent versions of Maxwell’s equations. Preprint, University of Maryland (2008)

  24. Gill, T.L., Zachary, W.W., Lindsey, J.: The classical electron problem. Found. Phys. 31(9), 1299–1355 (2001)

    Article  MathSciNet  Google Scholar 

  25. Green, B.: The Fabric of the Cosmos. Vintage Books, New York (2004)

    Google Scholar 

  26. Holod, P.I., Klimyk, A.I.: Mathematical Foundations of Symmetry Theory. Naukova Dumka, Kyiv (1992) (in Ukrainian)

    Google Scholar 

  27. Jackiw, R.: Lorentz violation in a diffeomorphism-invariant theory. arXiv:0709.2348 [hep-th] (2007)

  28. Jackiw, R., Polychronakos, A.P.: Dynamical Poincaré symmetry realized by field-dependent diffeomorphisms. arXiv:hep-th/9809123 (1998)

  29. Kleinert, H.: Path Integrals, 2nd edn. World Scientific, Singapore (1995), p. 685

    MATH  Google Scholar 

  30. Klymyshyn, I.A.: Relativistic Astronomy. Naukova Dumka, Kyiv (1980) (in Ukrainian)

    Google Scholar 

  31. Kowalchuk, V., Slawianowski, J.J.: Hamiltonian systems inspired by the Schrödinger equation. Symmetry. Integrability Geom. Methods Appl. 4, 046 (2008)

    Google Scholar 

  32. Kupershmidt, B.A.: Infinite-dimensional analogs of the minimal coupling principle and of the Poincaré lemma for differential two-forms. Differ. Geom. Appl. 2, 275–293 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Logunov, A.A.: Lectures on Relativity Theory and Gravitation. Nauka, Moscow (1987)

    MATH  Google Scholar 

  34. Logunov, A.A.: The Theory of Gravity. Nauka, Moscow (2000)

    Google Scholar 

  35. Logunov, A.A.: Relativistic Theory of Gravitation. Nauka, Moscow (2006) (In Russian)

    Google Scholar 

  36. Logunov, A.A., Mestvirishvili, M.A.: Relativistic Theory of Gravitation. Nauka, Moscow (1989) (In Russian)

    Google Scholar 

  37. Landau, L.D., Lifshitz, E.M.: Field Theory, vol. 2. Nauka, Moscow (1973) (in Russian)

    Google Scholar 

  38. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, vol. 6. Nauka, Moscow (1974) (in Russian)

    Google Scholar 

  39. Marsden, J., Chorin, A.: Mathematical Foundations of Fluid Mechanics. Springer, New York (1993)

    Google Scholar 

  40. Mermin, N.D.: Relativity without light. Am. J. Phys. 52, 119–124 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  41. Mermin, N.D.: It’s About Time: Understanding Einstein’s Relativity. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  42. Newman, R.P.: The global structure of simple space-times. Commun. Math. Phys. 123, 17–52 (1989)

    Article  MATH  ADS  Google Scholar 

  43. Okun, L.B.: The Einstein formula: E 0=mc 2. “Isn’t the Lord laughing?”. UFN 178(5), 541–555 (2008)

    Article  Google Scholar 

  44. Okun, L.B.: The relativity and Pithagoras theorem. UFN 178(6), 653–663 (2006) (in Russian)

    Article  Google Scholar 

  45. Pauli, W.: Theory of Relativity. Pergamon Press, Oxford (1958)

    MATH  Google Scholar 

  46. Prykarpatsky, A., Mykytiuk, I.: Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects. Kluwer Academic, Amsterdam (1998)

    MATH  Google Scholar 

  47. Prykarpatsky, Y.A., Samoilenko, A.M., Prykarpatsky, A.K.: The geometric properties of canonically reduced symplectic spaces with symmetry, their relationship with structures on associated principal fiber bundles and some applications. Opuscula Math. 25(2), 287–298 (2005)

    MATH  MathSciNet  Google Scholar 

  48. Prykarpatsky, A.K., Bogolubov, N.N. Jr., Taneri, U.: The field structure of a vacuum, Maxwell equations and relativity theory aspects. Preprint ICTP, Trieste, IC/2008/051 (http://publications.ictp.it)

  49. Prykarpatsky, A.K., Bogolubov, N.N. Jr., Taneri, U.: The vacuum structure, special relativity and quantum mechanics revisited: a field theory no-geometry approach. Theor. Math. Phys. 160(2), 1079–1095 (2009) arXiv:0807.3691v.8 [gr-gc]

    Article  MATH  Google Scholar 

  50. Repchenko, O.: Field Physics. Galeria, Moscow (2005)

    Google Scholar 

  51. Schwinger, J.: Non-Abelian gauge fields. Relativistic invariance. Phys. Rev. 127, 324–330 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Sławianowski, J.J.: Geometry of Phase Spaces. Wiley, New York (1991)

    MATH  Google Scholar 

  53. Thirring, W.: Classical Mathematical Physics, 3rd edn. Springer, Berlin (1992)

    Google Scholar 

  54. You, L., Lewensterin, M., Glauber, R., Cooper, J.: Quantum field theory of atoms interacting with photons III. Phys. Rev. A 53, 329 (1996)

    Article  ADS  Google Scholar 

  55. Weinstock, R.: New approach to special relativity. Am. J. Phys. 33, 640–645 (1965)

    Article  MATH  ADS  Google Scholar 

  56. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1975)

    Google Scholar 

  57. Wilchek, F.: QCD and natural philosophy. Ann. H. Poincaré 4, 211–228 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoliy K. Prykarpatsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogolubov, N.N., Prykarpatsky, A.K. The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization. Found Phys 40, 469–493 (2010). https://doi.org/10.1007/s10701-009-9399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9399-1

Navigation