Advertisement

Foundations of Physics

, Volume 41, Issue 1, pp 4–32 | Cite as

Manifestly Covariant Quantum Theory with Invariant Evolution Parameter in Relativistic Dynamics

Article

Abstract

Manifestly covariant quantum theory with invariant evolution parameter is a parametrized relativistic dynamical theory. The study of parameterized relativistic dynamics (PRD) helps us understand the consequences of changing key assumptions of quantum field theory (QFT). QFT has been very successful at explaining physical observations and is the basis of the conventional paradigm, which includes the Standard Model of electroweak and strong interactions. Despite its record of success, some phenomena are anomalies that may require a modification of the Standard Model. The anomalies include neutrino oscillations, non-locality, and gravity.

The two key QFT assumptions that are altered in PRD are the following: fields depend on space and time; and interactions between fields are local. Locality and non-locality refer to the correlation of particles with space-like separation. A local theory does not allow the existence of greater than light speed correlations, while a non-local theory does. PRD is a non-local theory that allows fields to depend on space, time and an invariant evolution parameter. A formulation of PRD is presented together with applications that can be directly compared to results from the conventional paradigm.

Relativistic dynamics Manifestly covariant quantum theory Neutrino oscillation Interference in time EPR experiment Action at a distance Non-locality Stueckelberg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aghassi, J.J., Roman, P., Santilli, R.M.: Phys. Rev. D 1, 2753 (1970) CrossRefADSGoogle Scholar
  2. 2.
    Amsler, C., et al., Particle Data Group: Phys. Lett. B 667, 1 (2008). http://pdglive.lbl.gov/listings1.brl?quickin=Y accessed 5 October 2008 CrossRefADSGoogle Scholar
  3. 3.
    Aparicio, J.P., Gaioli, F.H., Garcia Alvarez, E.T.: Phys. Rev. 51, 96 (1995) CrossRefADSGoogle Scholar
  4. 4.
    Aspect, A., Dalibard, J., Roger, G.: Phys. Rev. Lett. 49, 1804 (1982) CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Bell, J.S.: Physica 1, 195 (1964) Google Scholar
  6. 6.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987) Google Scholar
  7. 7.
    Bohm, D.: Phys. Rev. 85, 166 (1952) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Bohm, D.: Phys. Rev. 89, 458 (1953) MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993) Google Scholar
  10. 10.
    Droz-Vincent, P.: Found. Phys. 25, 67 (1995) CrossRefMathSciNetADSMATHGoogle Scholar
  11. 11.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935) MATHCrossRefADSGoogle Scholar
  12. 12.
    Enatsu, H.: Prog. Theor. Phys. 30, 236 (1963) CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Enatsu, H.: Nuovo Cimento A 95, 269 (1986) CrossRefADSGoogle Scholar
  14. 14.
    Fanchi, J.R.: Phys. Rev. D 20, 3108 (1979) CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Fanchi, J.R.: Phys. Rev. A 34, 1677 (1986) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Fanchi, J.R.: Parametrized Relativistic Quantum Theory. Kluwer, Amsterdam (1993) CrossRefGoogle Scholar
  17. 17.
    Fanchi, J.R.: Found. Phys. 23, 487 (1993) CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Fanchi, J.R.: Found. Phys. 28, 1521 (1998) CrossRefGoogle Scholar
  19. 19.
    Fanchi, J.R.: Found. Phys. 30, 1161 (2000) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Fanchi, J.R.: In: Reimer, A. (ed.) Horizons in World Physics, vol. 240, pp. 117–159. Nova Science, Hauppauge (2003) Google Scholar
  21. 21.
    Fanchi, J.R.: Found. Phys. 33, 1189 (2003) CrossRefGoogle Scholar
  22. 22.
    Fanchi, J.R., Collins, R.E.: Found. Phys. 8, 851 (1978) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Collins, R.E., Fanchi, J.R.: Nuovo Cimento A 48, 314 (1978) CrossRefADSGoogle Scholar
  24. 24.
    Feynman, R.P.: Rev. Mod. Phys. 20, 367 (1948) CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Feynman, R.P.: Phys. Rev. 80, 440 (1950) MATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Feynman, R.P.: Phys. Rev. 84, 108 (1951) MATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Fock, V.A.: Phys. Z. Sowjetunion 12, 404 (1937) Google Scholar
  28. 28.
    Fröhner, F.H.: Z. Naturforsch. 53a, 637 (1998) Google Scholar
  29. 29.
    Hannibal, L.: Found. Phys. 8, 309 (1995) CrossRefGoogle Scholar
  30. 30.
    Horwitz, L.P.: Phys. Lett. A 355, 1 (2006) CrossRefADSGoogle Scholar
  31. 31.
    Horwitz, L.P.: Found. Phys. 37, 734 (2007) MATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Horwitz, L.P., Piron, C.: Helv. Phys. Acta 46, 316 (1973) Google Scholar
  33. 33.
    Horwitz, L.P., Rabin, Y.: Lett. Nuovo Cimento 17, 501 (1976) CrossRefGoogle Scholar
  34. 34.
    Johnson, J.E.: Phys. Rev. 181, 1755 (1969) CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Kubo, R.: Nuovo Cimento A 85, 293 (1985) CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Kuhn, T.: The Structure of Scientific Revolutions, 2nd edn. University of Chicago Press, Chicago (1970) Google Scholar
  37. 37.
    Kyprianidis, A.: Phys. Rep. 155, 1 (1987) CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Land, M., Horwitz, L.P.: Found. Phys. 31, 967 (2001) CrossRefMathSciNetGoogle Scholar
  39. 39.
    Lindner, F., et al.: Phys. Rev. Lett. 95, 040401 (2005) CrossRefADSGoogle Scholar
  40. 40.
    Mehra, J.: The Beat of a Different Drum. Clarendon, Oxford (1994) MATHGoogle Scholar
  41. 41.
    Nambu, Y.: Prog. Theor. Phys. 5, 82 (1950) CrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Pavsic, M.: Found. Phys. 21, 1005 (1991) CrossRefMathSciNetADSGoogle Scholar
  43. 43.
    Pavsic, M.: Nuovo Cimento A 104, 1337 (1991) CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    Pavsic, M.: The Landscape of Theoretical Physics: A Global View. Kluwer, Amsterdam (2001) MATHGoogle Scholar
  45. 45.
    Santilli, R.M.: Isodual Theory of Antimatter. Springer, Dordrecht (2006) MATHGoogle Scholar
  46. 46.
    Schweber, S.S.: Rev. Mod. Phys. 58, 449 (1986) CrossRefMathSciNetADSGoogle Scholar
  47. 47.
    Shnerb, N., Horwitz, L.P.: Phys. Rev. A 48, 4068 (1993) CrossRefMathSciNetADSGoogle Scholar
  48. 48.
    Stueckelberg, E.C.G.: Helv. Phys. Acta 14, 588 (1941) MATHMathSciNetGoogle Scholar
  49. 49.
    Stueckelberg, E.C.G.: Helv. Phys. Acta 14, 322 (1941) MathSciNetGoogle Scholar
  50. 50.
    Stueckelberg, E.C.G.: Helv. Phys. Acta 14, 23 (1942) MathSciNetGoogle Scholar
  51. 51.
    Tonomura, A.: Electron Holography. Springer, New York (1993) Google Scholar
  52. 52.
    Trump, M.A., Schieve, W.C.: Classical Relativistic Many-Body Dynamics. Kluwer, Amsterdam (1999) MATHGoogle Scholar
  53. 53.
    Weinberg, S.: Quantum Theory of Fields, Vol. I Foundations. Cambridge University Press, New York (1995) Google Scholar
  54. 54.
    Weinberg, S.: Quantum Theory of Fields, Vol. II Modern Applications. Cambridge University Press, New York (1996) Google Scholar
  55. 55.
    Weinberg, S.: Quantum Theory of Fields, Vol. III Supersymmetry. Cambridge University Press, New York (2000) Google Scholar
  56. 56.
    Wilczek, F.: Quantum Field Theory. Rev. Mod. Phys. 71, S85–S95 (1999). arXiv:hep-th/9803075v2 accessed 5 October 2008 CrossRefGoogle Scholar
  57. 57.
    Wollenhaupt, M., et al.: Phys. Rev. Lett. 89, 1730011 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Engineering and TCU Energy InstituteTexas Christian UniversityFort WorthUSA

Personalised recommendations