Advertisement

Foundations of Physics

, 40:1 | Cite as

Zitterbewegung in Quantum Mechanics

  • David Hestenes
Article

Abstract

The possibility that zitterbewegung opens a window to particle substructure in quantum mechanics is explored by constructing a particle model with structural features inherent in the Dirac equation. This paper develops a self-contained dynamical model of the electron as a lightlike particle with helical zitterbewegung and electromagnetic interactions. The model admits periodic solutions with quantized energy, and the correct magnetic moment is generated by charge circulation. It attributes to the electron an electric dipole moment rotating with ultrahigh frequency, and the possibility of observing this directly as a resonance in electron channeling is analyzed in detail. Correspondence with the Dirac equation is discussed. A modification of the Dirac equation is suggested to incorporate the rotating dipole moment.

Keywords

Zitterbewegung Geometric algebra Electron channeling de Broglie frequency 

References

  1. 1.
    Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71, 691–704 (2003) CrossRefADSGoogle Scholar
  2. 2.
    Hestenes, D.: Mysteries and insights of Dirac theory. Ann. Fond. Louis Broglie 28, 390–408 (2003) MathSciNetGoogle Scholar
  3. 3.
    Hestenes, D.: Real Dirac theory. In: The Theory of the Electron. Advances in Applied Clifford Algebras, vol. 7, pp. 97–144. UNAM, Mexico (1997). Unfortunately, the published text is marred by annoying font substitutions Google Scholar
  4. 4.
    Bender, D., et al.: Tests of QED at 29 GeV center-of-mass energy. Phys. Rev. D 30, 515 (1984) CrossRefADSGoogle Scholar
  5. 5.
    Bohm, D., Hiley, B.: The Undivided Universe, an Ontological Interpretation of Quantum Theory, 2nd edn. Routledge, London (1993), p. 220 Google Scholar
  6. 6.
    Schroedinger, E.: Über die kräftfreie bewegung in der relativistischen quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. 24(418) (1930) Google Scholar
  7. 7.
    Frenkel, J.: Die electrodynamik des rotierenden electrons. Z. Phys. 36, 243–262 (1926) ADSGoogle Scholar
  8. 8.
    Thomas, L.H.: Kinematics of an electron with an axis. Philos. Mag. 3, 1–22 (1927) Google Scholar
  9. 9.
    Mathisson, M.: Neue mechanik materieller systeme. Acta Phys. Pol. 6, 163–200 (1937) MATHGoogle Scholar
  10. 10.
    Weyssenhoff, J.: On two relativistic models of Dirac’s electron. Acta Phys. Pol. 9, 47–53 (1947) Google Scholar
  11. 11.
    Corben, H.: Classical and Quantum Theory of Spinning Particles, 2nd edn. Holden-Day, San Francisco (1948) Google Scholar
  12. 12.
    Gürsey, F.: Relativistic kinematics of a classical point particle in spinor form. Nuovo Cimento 5, 785–809 (1957) Google Scholar
  13. 13.
    Rivas, M.: Kinematical Theory of Spinning Particles. Kluwer, Dordrecht (2001) MATHGoogle Scholar
  14. 14.
    Bargman, V., Michel, L., Telegdi, V.: Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 2, 435–437 (1959) CrossRefADSGoogle Scholar
  15. 15.
    Costa de Beauregard, O.: Noncollinearity of velocity and momentum of spinning particles. Found. Phys. 2, 111–126 (1972) CrossRefADSGoogle Scholar
  16. 16.
    Doran, C., Lasenby, A., Gull, S., Somaroo, S., Challinor, A.: Spacetime algebra and electron physics. Adv. Imaging Electron Phys. 95, 271 (1996) Google Scholar
  17. 17.
    Rivas, M.: Is there a classical spin contribution to the tunnel effect? Phys. Lett. A 248, 279 (1998) CrossRefADSGoogle Scholar
  18. 18.
    Weyssenhoff, J.: Relativistically invariant homogeneous canonical formalism with higher derivatives. Acta Phys. Pol. 11, 49–70 (1951) MATHMathSciNetGoogle Scholar
  19. 19.
    Krüger, H.: The electron as a self-interacting lightlike point charge: Classification of lightlike curves in spacetime under the group of SO(1,3) motions. In: The Theory of the Electron. Advances in Applied Clifford Algebras, vol. 7, pp. 145–162. UNAM, Mexico (1997) Google Scholar
  20. 20.
    Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003) MATHGoogle Scholar
  21. 21.
    Proca, A.: Mechanique du point. J. Phys. Radium 15, 15–72 (1954) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Barut, A.O., Zanghi, N.: Classical model of the Dirac electron. Phys. Rev. Lett. 52, 2009–2012 (1984) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Gull, S.F.: Charged particles at potential steps. In: Hestenes, D., Weingartshafer, A. (eds.) The Electron, pp. 37–48. Kluwer, Dordrecht (1991) Google Scholar
  24. 24.
    Lasenby, A., Doran, C., Gull, S.: A multivector derivative approach to Lagrangian field theory. Found. Phys. 23, 1295–1327 (1993) CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Schwinberg, P., Van Dyck, R. Jr., Dehmelt, H.: Electron magnetic moment from geonium spectra: Early experiments and background concepts. Phys. Rev. D 34, 722–736 (1986) CrossRefADSGoogle Scholar
  26. 26.
    Hestenes, D.: Spin and uncertainty in the interpretation of quantum mechanics. Am. J. Phys. 47, 399–415 (1979) CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Yoshioka, D.: The Quantum Hall Effect. Springer, Berlin (2002) MATHGoogle Scholar
  28. 28.
    Bjorken, J., Drell, S.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964) Google Scholar
  29. 29.
    Gouanère, M., Spighel, M., Cue, N., Gaillard, M.J., Genre, R., Kirsh, R.G., Poizat, J.C., Remillieux, J., Catillon, P., Roussel, L.: Experimental observation compatible with the particle internal clock. Ann. Fond. Louis Broglie 30, 109–115 (2005) Google Scholar
  30. 30.
    Gemmell, D.: Channeling and related effects in the motion of charged particles through crystals. Rev. Mod. Phys. 46, 129–227 (1974) CrossRefADSGoogle Scholar
  31. 31.
    Lindhard, J.: Influence of crystal lattice on motion of energetic charged particles. Mat. Fys. Medd. Dan. Vid. Selsk. 34(14), 1–64 (1974) MathSciNetGoogle Scholar
  32. 32.
    Morse, P., Feshbach, H.: Methods of Theoretical Physics, vol. I. McGraw-Hill, New York (1953) MATHGoogle Scholar
  33. 33.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1972) MATHGoogle Scholar
  34. 34.
    Landau, L., Lifshitz, E.: Mechanics. Pergamon, Oxford (1969) (p. 80) Google Scholar
  35. 35.
    Hestenes, D.: Gauge gravity and electroweak theory. In: Jantzen, R., Kleinert, H., Ruffini, R. (eds.) Proceedings of the Eleventh Marcel Grossmann Meeting. World Scientific, Singapore (2007) Google Scholar
  36. 36.
    Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928) CrossRefADSGoogle Scholar
  37. 37.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University Press, Oxford (1957), pp. 261–267 Google Scholar
  38. 38.
    Greiner, G.: Relativistic Quantum Mechanics, 4th edn. Springer, Berlin (1990), pp. 91–93, 233–236 MATHGoogle Scholar
  39. 39.
    Recami, E., Salesi, G.: Kinematics and hydrodynamics of spinning particles. Phys. Rev. A 57, 98–105 (1998) CrossRefADSGoogle Scholar
  40. 40.
    de Broglie, L.: Ondes et quanta. C. R. Math. 177, 507–510 (1923) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsArizona State UniversityTempeUSA

Personalised recommendations