Advertisement

Foundations of Physics

, 39:1394 | Cite as

A Re-interpretation of the Concept of Mass and of the Relativistic Mass-Energy Relation

  • Stefano Re Fiorentin
Article

Abstract

For over a century the definitions of mass and derivations of its relation with energy continue to be elaborated, demonstrating that the concept of mass is still not satisfactorily understood. The aim of this study is to show that, starting from the properties of Minkowski spacetime and from the principle of least action, energy expresses the property of inertia of a body. This implies that inertial mass can only be the object of a definition—the so called mass-energy relation—aimed at measuring energy in different units, more suitable to describe the huge amount of it enclosed in what we call the “rest-energy” of a body. Likewise, the concept of gravitational mass becomes unnecessary, being replaceable by energy, thus making the weak equivalence principle intrinsically verified. In dealing with mass, a new unit of measurement is foretold for it, which relies on the de Broglie frequency of atoms, the value of which can today be measured with an accuracy of a few parts in 109.

Keywords

Classical force fields Special relativity Classical general relativity Units and standards 

References

  1. 1.
    Einstein, A.: Ann. Phys. 18, 639 (1905) CrossRefGoogle Scholar
  2. 2.
    Plank, M.: Zur Dynamik bewegter Systeme. Ber. Sitz. 542 (1907) Google Scholar
  3. 3.
    Ives, H.E.: Derivation of the mass-energy relation. J. Opt. Soc. Am. 42, 540 (1952) CrossRefADSGoogle Scholar
  4. 4.
    Sachs, M.: On the meaning of E=mc 2. Int. J. Theor. Phys. 8, 377 (1973) CrossRefGoogle Scholar
  5. 5.
    Stachel, J., Torretti, R.: Einstein’s first derivation of mass-energy equivalence. Am. J. Phys. 50, 760 (1982) CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Jammer, M.: Concepts of Mass in Classical and Modern Physics. Harvard University Press, Harvard (1961) Google Scholar
  7. 7.
    Jammer, M.: Concepts of Mass in Contemporary Physics and Philosophy. Princeton University Press, Princeton (1999) Google Scholar
  8. 8.
    Pendse, C.G.: A note on the definition and determination of mass in Newtonian mechanics. Philos. Mag. 24, 1012 (1937) MATHGoogle Scholar
  9. 9.
    Narlikar, V.V.: The concept and determination of mass in Newtonian mechanics. Philos. Mag. 27, 33 (1938) Google Scholar
  10. 10.
    McKinsey, J.C.C., Sugar, A.C., Suppes, P.: Axiomatic foundations of classical particle mechanics. J. Rat. Mech. Anal. 2, 253 (1953) MathSciNetGoogle Scholar
  11. 11.
    Carnap, R.: An Introduction to the Philosophy of Science. Basic Books, New York (1966), p. 103 Google Scholar
  12. 12.
    Koslow, A.: Mach’s concept of mass: program and definition. Synthese 18, 216 (1968) MATHCrossRefGoogle Scholar
  13. 13.
    Goodinson, A., Luffman, B.L.: On the definition of mass in classical physics. Am. J. Phys. 53, 40 (1985) CrossRefADSGoogle Scholar
  14. 14.
    Kamlah, A.: Zur Systematik der Massendefinitionen. Conceptus 22, 69 (1988) MathSciNetGoogle Scholar
  15. 15.
    Schmidt, H.J.: A definition of mass in Newton-Lagrange mechanics. Philos. Nat. 30, 189 (1993) Google Scholar
  16. 16.
    Sant’Anna, A.S.: An axiomatic framework for classical particle mechanics without force. Philos. Nat. 33, 187 (1996) MathSciNetGoogle Scholar
  17. 17.
    Zanchini, E., Barletta, A.: A rigorous definition of mass in special relativity. Nuovo Cimento B 123, 153 (2008) MathSciNetADSGoogle Scholar
  18. 18.
    Steck, D.J., Rioux, F.: An elementary development of mass-energy equivalence. Am. J. Phys. 51, 461 (1983) CrossRefADSGoogle Scholar
  19. 19.
    Feigenbaum, M.J., Mermin, N.D.: E=mc 2. Am. J. Phys. 56, 18 (1988) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Rohrlich, F.: An elementary derivation of E=mc 2. Am. J. Phys. 58, 348 (1990) CrossRefADSGoogle Scholar
  21. 21.
    Srivastava, V.P.: A simple derivation of E=mc 2. Phys. Educ. 26, 214 (1991) Google Scholar
  22. 22.
    Baierlein, R.: Teaching E=mc 2. Phys. Teach. 29, 170 (1991) CrossRefADSGoogle Scholar
  23. 23.
    Rindler, W.: Relativity: Special, General, and Cosmological, 2nd edn. Oxford University Press, London (2006), p. 113 Google Scholar
  24. 24.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 4nd edn. Butterworth, Stoneham (1980), p. 25 Google Scholar
  25. 25.
    Noether, E.: Invariante Variationsprobleme. Nachr. D. König. Ges. Wiss. Gött., Math.-Phys. 235 (1918) Google Scholar
  26. 26.
    Einstein, A.: Prinzipielles zur allgemeinen Relativitätstheorie. Ann. Phys. 55, 240 (1918) Google Scholar
  27. 27.
    Baker, E.F.: Am. J. Phys. 14, 309 (1946) CrossRefADSGoogle Scholar
  28. 28.
    Dicke, R.H.: Science 129, 621 (1959) CrossRefADSGoogle Scholar
  29. 29.
    Higgs, P.W.: Phys. Lett. 12, 132 (1964) ADSGoogle Scholar
  30. 30.
    Feynman, R.: QED: The Strange Theory of Light and Matter. Princeton University Press, Princeton (1985) Google Scholar
  31. 31.
    de Broglie, L.: Philos. Mag. 47, 446 (1924) Google Scholar
  32. 32.
    de Broglie, L.: Ann. Phys. 3, 22 (1925) Google Scholar
  33. 33.
    Planck, M.: Verh. D. Phys. Ges. 2, 202 (1900) Google Scholar
  34. 34.
    Planck, M.: Verh. D. Phys. Ges. 2, 237 (1900) Google Scholar
  35. 35.
    CODATA (Committee on Data for Science and Technology) 2007 values. They are based on all of the data available through 31 December 2006 Google Scholar
  36. 36.
    Wignall, J.W.G.: Metrologia 44, L19 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Advanced Engineering DepartmentFiat Group AutomobilesTurinItaly

Personalised recommendations