Skip to main content
Log in

Four Causal Classes of Newtonian Frames

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The causal characters (spacelike, lightlike, timelike) of the coordinate lines, coordinate surfaces and coordinate hypersurfaces of a coordinate system in Relativity define what is called its causal class. It is known that, in any relativistic space-time, there exist one hundred and ninety nine such causal classes. But in Newtonian physics (where only spacelike and timelike characters exist) the corresponding causal classes have not been discussed until recently. Here it is shown that, in sharp contrast with the relativistic case, in Newtonian space-time the different causal classes of coordinate systems are drastically reduced to four. These causal classes admit simple geometric descriptions and physical interpretations. For example, it is shown that one can generate coordinate systems of the four causal classes by means of the sole linear synchronization group, i.e. by coordinate transformations that only change the origin of time linearly. The relativistic analogs of these examples are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Coll, B., Morales, J.A.: 199 Causal classes of space-time frames. Int. J. Theor. Phys. 31, 1045–1062 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coll, B., Martín, J.J. (eds.): In: Proc. Int. School on Relativistic Coordinates, Reference and Positioning Systems, Salamanca, 2005. Universidad de Salamanca (in press)

  3. Coll, B.: Elements for a theory of relativistic coordinate systems. Formal and physical aspects. In: Pascual-Sánchez, J.F., Floría, L., San Miguel, A., Vicente, F. (eds.) Proceedings of the XXIII Spanish Relativity Meeting ERE-2000 on Reference Frames and Gravitomagnetism, pp. 53–65. World Scientific, Singapore (2001). http//coll.cc

    Google Scholar 

  4. Bahder, T.B.: Navigation in curved space-time. Am. J. Phys. 69, 315–321 (2001)

    Article  ADS  Google Scholar 

  5. Rovelli, C.: GPS observables in general relativity. Phys. Rev. D 65, 044017 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  6. Blagojević, M., Garecki, J., Hehl, F.W., Obukhov, Y.N.: Real null coframes in general relativity and GPS type coordinates. Phys. Rev. D 65, 044018 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. Lachièze-Rey, M.: The covariance of GPS coordinates and frames. Class. Quantum Gravity 23, 3531–3544 (2006)

    Article  MATH  ADS  Google Scholar 

  8. Coll, B., Ferrando, J.J., Morales, J.A.: Two-dimensional approach to relativistic positioning systems. Phys. Rev. D 73, 084017 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  9. Coll, B., Ferrando, J.J., Morales, J.A.: Positioning with stationary emitters in a two-dimensional space-time. Phys. Rev. D 74, 104003 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  10. Coll, B., Pozo, J.M.: Relativistic positioning systems: the emission coordinates. Class. Quantum. Gravity 23, 7395–7416 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Bini, D., Geralico, A., Ruggiero, M.L., Tartaglia, A.: Emission vs Fermi coordinates: applications to relativistic positioning systems. Class. Quantum. Gravity 25, 205011 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  12. Coll, B., Ferrando, J.J., Morales, J.A.: Emission coordinates in Minkowski space-time. In: Kunze, K.E., Mars, M., Vázquez-Mozo, M.A. (eds.) Physics and Mathematics of Gravitation, Proceedings of the XXXIth Spanish Relativity Meeting ERE-2008. AIP Conference Proceedings, vol. 1122, pp. 225–228. AIP, New York (2009)

    Google Scholar 

  13. Coll, B.: Temps uniforme et indice d’un fluid en relativité. Manuscript (1972). http://coll.cc

  14. Cartan, E.: Sur les variétés à connexion affine et la théorie de la relativité generalisée. Ann. Sci. École Norm. Sup. 41, 1–25 (1924)

    MathSciNet  Google Scholar 

  15. Trautman, A.: Sur la théorie newtonienne de la gravitation. C.R. Acad. Sci. Paris 257, 617–720 (1963). For completeness, see Trautman, A.: Comparison of Newtonian and relativistic theories of space-time. In: B. Hoffmann (ed.) Perspectives in Geometry and Relativity. Essays in Honor of Vlácav Hlavaty, pp. 413–424. Bloomington, Indiana Univ. Press, 1966

    MATH  MathSciNet  Google Scholar 

  16. Rüede, C., Strautmann, N.: On Newton-Cartan Cosmology. Helv. Phys. Acta 70, 318–335 (1997). See also arXiv:gr-qc/9604054

    MATH  MathSciNet  ADS  Google Scholar 

  17. Coll, B., Ferrando, J.J., Morales, J.A.: Newtonian and Lorentzian emission coordinates. Phys. Rev. D 80, 064038 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Morales-Lladosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coll, B., Ferrando, J.J. & Morales-Lladosa, J.A. Four Causal Classes of Newtonian Frames. Found Phys 39, 1280 (2009). https://doi.org/10.1007/s10701-009-9353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-009-9353-2

Keywords

Navigation