Skip to main content
Log in

Connecting Spin and Statistics in Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Physics is simple but subtle

Paul Ehrenfest

Abstract

The spin-statistics connection is derived in a simple manner under the postulates that the original and the exchange wave functions are simply added, and that the azimuthal phase angle, which defines the orientation of the spin part of each single-particle spin-component eigenfunction in the plane normal to the spin-quantization axis, is exchanged along with the other parameters. The spin factor (−1)2s belongs to the exchange wave function when this function is constructed so as to get the spinor ambiguity under control. This is achieved by effecting the exchange of the azimuthal angle by means of rotations and admitting only rotations in one sense. The procedure works in Galilean as well as in Lorentz-invariant quantum mechanics. Relativistic quantum field theory is not required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fierz, M.: Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin. Helv. Phys. Acta. 12, 3–37 (1939)

    Article  Google Scholar 

  2. Pauli, W.: The connection between spin and statistics. Phys. Rev. 58, 716–722 (1940)

    Article  MATH  ADS  Google Scholar 

  3. Jost, R.: Das Pauli-Prinzip und die Lorentz-Gruppe. In: Fierz, M., Weisskopf, V.F. (eds.) Theoretical Physics in the Twentieth Century, pp. 107–136. Interscience, New York (1960)

    Google Scholar 

  4. Duck, I., Sudarshan, E.C.G.: Pauli and the Spin-Statistics Theorem. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  5. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. III. Addison-Wesley, Reading (1965)

    Google Scholar 

  6. About half of these publications are accessible via the internet under arXiv.org/find [Title: spin AND statistics]; the others can be traced back from these

  7. Hilborn, R.C.: Answer to Question #7 [“The spin-statistics theorem,” Dwight E. Neuenschwander, Am. J. Phys. 62 (11), 972 (1994)]. Am. J. Phys. 63, 298–299 (1995)

    Article  ADS  Google Scholar 

  8. Duck, I., Sudarshan, E.C.G.: Toward an understanding of the spin-statistics theorem. Am. J. Phys. 66, 284–303 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  9. Romer, R.H.: The spin-statistics theorem. Am. J. Phys. 70, 791 (2002)

    Article  ADS  Google Scholar 

  10. Morgan, J.A.: Spin and statistics in classical mechanics. Am. J. Phys. 72, 1408–1417 (2004). arXiv:quant-ph/0401070

    Article  ADS  Google Scholar 

  11. Broyles, A.A.: Derivation of the Pauli exchange principle. arXiv:quant-ph/9906046

  12. Broyles, A.A.: Spin and statistics. Am. J. Phys. 44, 340–343 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  13. Peshkin, M.: Reply to “Non-relativistic proofs of the spin-statistics connection”, by Shaji and Sudarshan. arXiv:quant-ph/0402118

  14. Peshkin, M.: Reply to “Comment on ‘Spin and statistics in nonrelativistic quantum mechanics: The spin-zero case'''. Phys. Rev. A 68, 046102 (2003)

    Article  ADS  Google Scholar 

  15. Peshkin, M.: Reply to “No spin-statistics connection in nonrelativistic quantum mechanics”. arXiv:quant-ph/0306189

  16. Peshkin, M.: Spin and statistics in nonrelativistic quantum mechanics: The spin-zero case. Phys. Rev. A 67, 042102 (2003)

    Article  ADS  Google Scholar 

  17. Peshkin, M.: On spin and statistics in quantum mechanics. arXiv:quant-ph/0207017

  18. Morgan, J.A.: Demonstration of the spin-statistics connection in elementary quantum mechanics. arXiv:physics/0702058

  19. Kuckert, B.: Spin and statistics in nonrelativistic quantum mechanics, I. Phys. Lett. A 322, 47–53 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Donth, E.: Ein einfacher nichtrelativistischer Beweis des Spin-Statistik-Theorems und das Verhältnis von Geometrie und Physik in der Quantenmechanik. Wissenschaftl. Z. Tech. Hochsch. “Carl Schorlemmer” Leuna-Merseburg 19, 602–606 (1977)

    Google Scholar 

  21. Donth, E.: Non-relativistic proof of the spin statistics theorem. Phys. Lett. A 32, 209–210 (1970)

    Article  ADS  Google Scholar 

  22. Kuckert, B., Mund, J.: Spin & statistics in nonrelativistic quantum mechanics, II. Ann. Phys. (Leipz.) 14, 309–311 (2005). arXiv:quant-ph/0411197

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Bacry, H.: Answer to Question #7 [“The spin-statistics theorem,” Dwight E. Neuenschwander, Am. J. Phys. 62 (11), 972 (1994)]. Am. J. Phys. 63, 297–298 (1995)

    Article  ADS  Google Scholar 

  24. Bacry, H.: Introduction aux concepts de la physique statistique, pp. 198–200. Ellipses, Paris (1991)

    Google Scholar 

  25. Piron, C.: Mécanique quantique, Bases et applications, pp. 166–167. Presses polytechniques et universitaires romandes, Lausanne (1990)

    MATH  Google Scholar 

  26. Balachandran, A.P., Daughton, A., Gu, Z.-C., Sorkin, R.D., Marmo, G., Srivastava, A.M.: Spin-statistics theorems without relativity or field theory. Int. J. Modern Phys. A 8, 2993–3044 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Feynman, R.P.: The reason for antiparticles. In: Feynman, R.P., Weinberg, S. (eds.) Elementary Particles and the Laws of Physics, pp. 1–59, especially pp. 56–59. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  28. York, M.: Symmetrizing the symmetrization postulate. In: Hilborn, R.C., Tino, G.M. (eds.) Spin-Statistics Connection and Commutation Relations, pp. 104–110. American Institute of Physics, Melville (2000). arXiv:quant-ph/0006101

    Google Scholar 

  29. York, M.: Identity, geometry, permutation, and the spin-statistics theorem. arXiv:quant-ph/9908078

  30. Jabs, A.: Quantum mechanics in terms of realism. Phys. Essays 9, 36–95 (1996). arXiv:quant-ph/9606017

    Article  MathSciNet  Google Scholar 

  31. Jabs, A.: An interpretation of the formalism of quantum mechanics in terms of epistemological realism. Br. J. Philos. Sci. 43, 405–421 (1992)

    Article  MathSciNet  Google Scholar 

  32. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vols. I, II. Wiley, New York (1977)

    Google Scholar 

  33. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics, p. 136. McGraw-Hill, New York (1964)

    Google Scholar 

  34. Feynman, R.P.: Quantum Electrodynamics, pp. 124–125. Benjamin, Elmsford (1961). The argumentation formulated here in quantum electrodynamics carries over to quantum mechanics. This holds also for equivalent formulations in many books on quantum field theory

    Google Scholar 

  35. Knopp, K.: Funktionentheorie, second part, pp. 90–91. de Gruyter, Berlin (1955). English translation by Bagemihl, F.: Theory of Functions, part II, pp. 101–103. Dover, New York (1996)

    Google Scholar 

  36. Weyl, H.: The Theory of Groups and Quantum Mechanics, p. 184. Dover, New York (1950)

    Google Scholar 

  37. von Foerster, T.: Answer to Question #7 [“The spin-statistics theorem,” Dwight E. Neuenschwander, Am. J. Phys. 62 (11), 972 (1994)]. Am. J. Phys. 64(5), 526 (1996)

    Article  ADS  Google Scholar 

  38. Gould, R.R.: Answer to Question #7 [“The spin-statistics theorem,” Dwight E. Neuenschwander, Am. J. Phys. 62 (11), 972 (1994)]. Am. J. Phys. 63(2), 109 (1995)

    Article  ADS  Google Scholar 

  39. Penrose, R., Rindler, W.: Spinors and Space-Time, vol. 1, p. 43. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  40. Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics. Addison-Wesley, Reading (1981). Chapter 2

    MATH  Google Scholar 

  41. Hartung, R.W.: Pauli principle in Euclidean geometry. Am. J. Phys. 47(10), 900–910 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  42. Rieflin, E.: Some mechanisms related to Dirac’s strings. Am. J. Phys. 47(4), 378–381 (1979)

    Article  ADS  Google Scholar 

  43. Schrödinger, E.: Die Mehrdeutigkeit der Wellenfunktion. Ann. Phys. (Leipz.) 32(5), 49–55 (1938). Reprinted in: Schrödinger, E.: Collected Papers, vol. 3, pp. 583–589. Verlag der Österreichischen Akademie der Wissenschaften, Wien (1984)

    Article  Google Scholar 

  44. van Winter, C.: Orbital angular momentum and group representations. Ann. Phys. (New York) 47, 232–274 (1968)

    Article  MATH  ADS  Google Scholar 

  45. Altmann, S.L.: Rotations, Quaternions, and Double Groups. Dover, New York (2005). Chapter 10

    Google Scholar 

  46. Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik. In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, vol. 24, part 1, pp. 189–193. Springer, Berlin (1933). English translation of a 1958 reprint: Achutan, P., Venkatesan, K.: General Principles of Quantum Mechanics, pp. 116–121. Springer, Berlin (1980)

    Google Scholar 

  47. Jacob, M., Wick, G.C.: On the general theory of collisions for particles with spin. Ann. Phys. (New York) 7, 404–428 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Jabs.

Additional information

Extended version of a talk given at the international workshop on theoretical and experimental aspects of the spin-statistics connection and related symmetries (SpinStat2008), Trieste, Italy, 21–25 October 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabs, A. Connecting Spin and Statistics in Quantum Mechanics. Found Phys 40, 776–792 (2010). https://doi.org/10.1007/s10701-009-9351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9351-4

Keywords

Navigation