Skip to main content
Log in

Quaternion-Loop Quantum Gravity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is shown that the Riemannian curvature of the 3-dimensional hypersurfaces in space-time, described by the Wilson loop integral, can be represented by a quaternion quantum operator induced by the SU(2) gauge potential, thus providing a justification for quaternion quantum gravity at the Tev energy scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac, P.A.M.: Proc. R. Soc. Lond. A 246, 333 (1958)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Arnowitt, R., Deser, S., Misner, C.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An introduction to Current Research, p. 227. Willey, New York (1962)

    Google Scholar 

  3. Dirac, P.A.M.: Phys. Rev. 114, 924 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Kuchar, K.V.: Canonical quantum gravity. In: 13th Intl. Conf. on General Relativity & Gravitation. Cordoba, Argentina (1992)

  5. Kuchar, K.V.: Time and interpretations of quantum gravity. In: 4th Can. Conf. on General Relativity and Astrophys. World Scientific, Singapore (1991)

    Google Scholar 

  6. Ashtekar, A.: Phys. Rev. Lett. 57, 2244 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  7. Ashtekar, A., Lewandowski, J.: Class. Quantum Gravity 21, 53 (2004). arXiv:gr-qc/0404018

    Article  MathSciNet  ADS  Google Scholar 

  8. Ashtekar, A.: Loop quantum gravity: four recent advances and a dozen frequently asked questions. arXiv:0705.2222 [gr-qc]

  9. Smolin, L.: An invitation to loop quantum gravity. In: Quantum Theory and Symmetries, pp. 655–682. Cincinatti (2003). arXiv:hep-th/0408048

  10. Han, M., Ma, Y.: Int. J. Mod. Phys. D 16, 1397 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Chevalley, C.: The Construction and Study of Certain Important Algebras. Math. Soc. Jpn. (1955)

  12. Finkelstein, D.: Notes on quaternion quantum mechanics. Preprint CERN-Th 59–9 (1959)

  13. Finkelstein, D., et al.: J. Math. Phys. 3, 207 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  14. Finkelstein, D., et al.: J. Math. Phys. 4, 788 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Adler, S.L.: Quaternion Quantum Mechanics and Quantum Fields. Oxford University Press, Oxford (1995)

    Google Scholar 

  16. Adler, S.L.: Non-adiabatic geometric phase in quaternionic Hilbert space. Preprint IASSNS-HEP-96/89 (1996)

  17. Maia, M.D., Bezerra, V.B.: Int. J. Theor. Phys. 40, 1283 (2001). arXiv:hep-th/0107107

    Article  MATH  MathSciNet  Google Scholar 

  18. Penrose, R.: Angular momentum: an approach to combinatorial space-time. In: Bastin, T. (ed.) Quantum Theory and Beyond. CUP, Cambridge (1971)

    Google Scholar 

  19. Modanese, G.: Phys. Rev. D 49, 6534 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  20. Atiyah, M.F.: Geometry of Yang-Mills Fields. Scuola Normale Superiore, Pisa (1979)

    MATH  Google Scholar 

  21. Ashtekar, A.: Some surprising implications of background independence in canonical quantum gravity. arXiv:0904.0184v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Maia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maia, M.D., e Almeida Silva, S.S. & Carvalho, F.S. Quaternion-Loop Quantum Gravity. Found Phys 39, 1273 (2009). https://doi.org/10.1007/s10701-009-9350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-009-9350-5

Keywords

Navigation