Foundations of Physics

, Volume 39, Issue 10, pp 1191–1196 | Cite as

Experimental Test of the Evans’ B(3)-Field: Measuring the Interaction with Free Electrons

  • Karel Jelínek
  • Jiří Pavlů
  • Jaromír Havlica
  • Jan Wild


During the past decade, M.W. Evans and his coworkers have been developing so-called “Evans” or “ECE theory” that intends to serve as an unified field theory. One of its predictions is an existence of a radiation magnetic field called a “B(3)-field” which should accompany a circularly polarized electromagnetic radiation. This field should affect free electrons in two ways: (1) the electrons should behave in the B(3)-field in the same way as in a classical magnetic field (i.e., Larmor precession) and moreover, (2) the electrons should undergo quantum interaction with the B(3)-field with the formation of a spin connection resonance. This paper presents an experimental test of the B(3)-field existence by observing the changes in trajectories of free electrons in special detector, when strong (up to 200 W/m2) continuous circularly polarized microwave radiation of a frequency of 2.45 GHz is applied. We have not detected any sign of B(3)-field in presented experiment. It follows that if the B(3)-field really exists, it should be at least 4 orders of magnitude smaller than the Evans’ theory predicts.


Experimental proof Evans unified field theory Einstein-Cartan theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruhn, G.W.: No Lorentz property of M.W. Evans’ O(3)-symmetry law. Phys. Scr. 74(5), 537–538 (2006) MATHCrossRefADSGoogle Scholar
  2. 2.
    Bruhn, G.W.: On the non-Lorentz-invariance of M.W. Evans’ O(3)-symmetry law. Found. Phys. 38(1), 3–6 (2008). DOI: 10.1007/s10701-007-9189-6 MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bruhn, G.W., Hehl, F.W., Jadczyk, A.: Comments on “Spin connection resonance in gravitational general relativity”. Acta Phys. Pol., B 39(1), 51–58 (2008) ADSMathSciNetGoogle Scholar
  4. 4.
    Evans, M.W.: The photons magnetostatic flux density \(\hat{B}_{\Pi}\) , the inverse Faraday effect revisited. Physica B 183(1–2), 103–107 (1993) CrossRefADSGoogle Scholar
  5. 5.
    Evans, M.W.: Reply to A. Lakhtakia: Experimental measurement of B(3). Found. Phys. Lett. 8(2), 187–193 (1995) CrossRefGoogle Scholar
  6. 6.
    Evans, M.W.: Reply to criticisms of the B(3) field. Found. Phys. Lett. 8(6), 563–573 (1995) CrossRefGoogle Scholar
  7. 7.
    Evans, M.W.: A generally covariant field equation for gravitation and electromagnetism. Found. Phys. Lett. 16(4), 369–377 (2003) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Evans, M.W.: The spinning and curving of spacetime: the electromagnetic and gravitational fields in the Evans field theory. Found. Phys. Lett. 18(5), 431–454 (2005). DOI: 10.1007/s10702-005-7535-5 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Evans, M.W.: Private communication (2008) Google Scholar
  10. 10.
    Evans, M.W., Vigier, J.P., Roy, S., Jeffers, S.: The Enigmatic Photon: Volume 3: Theory and Practice of the B(3) Field. Fundamental Theories of Physics, vol. 77. Kluwer, Amsterdam (1996) Google Scholar
  11. 11.
    Hehl, F.W.: An assessment of Evans’ unified field theory I. Found. Phys. 38(1), 7–37 (2008). DOI: 10.1007/s10701-007-9190-0 MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Hehl, F.W., Obukhov, Y.N.: An assessment of Evans’ unified field theory II. Found. Phys. 38(1), 38–46 (2008). DOI: 10.1007/s10701-007-9188-7 MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Hooft, G.T.: Editorial note. Found. Phys. 38(1), 1–2 (2008). DOI: 10.1007/s10701-007-9187-8 CrossRefADSGoogle Scholar
  14. 14.
    Jelinek, L.: Electromagnetic field measurement of magnetron transmitter. Measurement protocol EX 080963. National Institute of Public Health, Srobarova 48, 100 42 Prague, Czech Republic (2008). (In Czech) Google Scholar
  15. 15.
    Kraus, J.: The helical antenna. Proc. IRE 37(3), 263–272 (1949) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Lakhtakia, A.: Is Evans longitudinal ghost field B(3) unknowable. Found. Phys. Lett. 8(2), 183–186 (1995) CrossRefGoogle Scholar
  17. 17.
    Peksa, L., Gronych, T.: Quick determination of effective pumping speed for hydrogen permeation measurement. Vacuum 81(3), 321–324 (2006). DOI: 10.1016/j.vacuum.2006.05.008 CrossRefGoogle Scholar
  18. 18.
    Peksa, L., Gronych, T., Repa, P., Tesar, J.: Measurement of the pressure differences in a large chamber where the pressure is generated dynamically. Vacuum 67(3–4), 333–338 (2002). DOI: 10.1016/S0042-207X(02)00222-1 CrossRefGoogle Scholar
  19. 19.
    Raja, M., Allen, D., Sisk, W.: Room-temperature inverse Faraday-effect in terbium gallium garnet. Appl. Phys. Lett. 67(15), 2123–2125 (1995) CrossRefADSGoogle Scholar
  20. 20.
    Rikken, G.: Nonexistence of the optical Faraday-effect. Opt. Lett. 20(8), 846–847 (1995) CrossRefADSGoogle Scholar
  21. 21.
    Stanciu, C., Hansteen, F., Kimel, A., Kirilyuk, A., Tsukamoto, A., Itoh, A., Rasing, T.: All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99(4), 047601 (2007). DOI: 10.1103/PhysRevLett.99.047601 CrossRefADSGoogle Scholar
  22. 22.
    Wielandt, E.: The superposition principle of waves not fulfilled under M.W. Evans’ O(3) hypothesis. Phys. Scr. 74(5), 539–540 (2006) MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Karel Jelínek
    • 1
  • Jiří Pavlů
    • 1
  • Jaromír Havlica
    • 2
    • 3
  • Jan Wild
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Department of Multiphase ReactorsInstitute of Chemical Process Fundamentals of the ASCRPrague 6Czech Republic
  3. 3.Department of Chemistry, Faculty of ScienceJan Evangelista Purkyně University in Ústí nad LabemÚstí nad LabemCzech Republic

Personalised recommendations