Advertisement

Foundations of Physics

, Volume 41, Issue 1, pp 33–76 | Cite as

Surmounting the Cartesian Cut Through Philosophy, Physics, Logic, Cybernetics, and Geometry: Self-reference, Torsion, the Klein Bottle, the Time Operator, Multivalued Logics and Quantum Mechanics

Article

Abstract

In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology—after Merleau-Ponty, Heidegger and Rosen—and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to the commutator of the True and False operators of matrix logic, still with a quantum superposed state related to a Moebius surface, and as the physical field at the basis of Spencer-Brown’s primitive distinction in the protologic of the calculus of distinction. In this setting, paradox, self-reference, depth, time and space, higher-order non-dual logic, perception, spin and a time operator, the Klein bottle, hypernumbers due to Musès which include non-trivial square roots of ±1 and in particular non-trivial nilpotents, quantum field operators, the transformation of cognition to spin for two-state quantum systems, are found to be keenly interwoven in a world conception compatible with the philosophical approach taken for basis of this article. The Klein bottle is found not only to be the topological in-formation for self-reference and paradox whose logical counterpart in the calculus of indications are the paradoxical imaginary time waves, but also a classical-quantum transformer (Hadamard’s gate in quantum computation) which is indispensable to be able to obtain a complete multivalued logical system, and still to generate the matrix extension of classical connective Boolean logic. We further find that the multivalued logic that stems from considering the paradoxical equation in the calculus of distinctions, and in particular, the imaginary solutions to this equation, generates the matrix logic which supersedes the classical logic of connectives and which has for particular subtheories fuzzy and quantum logics. Thus, from a primitive distinction in the vacuum plane and the axioms of the calculus of distinction, we can derive by incorporating paradox, the world conception succinctly described above.

Keywords

Time operator Time waves Self-reference Torsion geometry Quantum mechanics Quantum computation Spin Radical recursion Muses hypernumbers Nilpotents Neurology Klein bottle Cartesian cut Calculus of distinctions Multivalued logics Matrix logics Philosophical phenomenology Cognition Perception Eikonal equation Photon Cybernetics Fibonacci sequence Systems theory Semiotics Endophysics Implicate and explicate orders Holomovent Mind-matter problem Meta-algorithmic level Moebius surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeles, P.: Dictionary of Philosophy. Barnes & Noble, New York (1981) Google Scholar
  2. 2.
    Antoniou, I., Misra, B.: The relativistic internal time operator. Int. J. Theor. Phys. 31(1) (1992) Google Scholar
  3. 3.
    Audretsch, J.: Entangled Systems. Wiley-VCH, Bonn (2006) Google Scholar
  4. 4.
    Bateson, G.: Steps to an Ecology of Mind. Paladin Books (1973) Google Scholar
  5. 5.
    Bateson, G.: Mind and Nature: A Necessary Unity. Bantam, New York (1988) Google Scholar
  6. 6.
    Battersby, S.: Einstein on acid. New Sci. 180(2426), 40 (2003) Google Scholar
  7. 7.
    Beloussov, L.V., Voeikov, V.L., Martynyuk, V.S. (eds.): Biophotonic and Coherent Systems in Biology. Springer, Berlin (2006) Google Scholar
  8. 8.
    Berlin, B., Kay, P.: Basic Color Terms: Their Universality and Evolution. University of California Press, Berkeley (1969) Google Scholar
  9. 9.
    Bohm, D., Hiley, B.: The Undivided Universe. Routlegde, London (1993) Google Scholar
  10. 10.
    Buccheri, R., di Gesù, V., Saniga, M.: Studies on the Structure of Time: From Physics to Psycho(patho)logy. Springer, Berlin (2000) Google Scholar
  11. 11.
    Buccheri, R., Elitzur, A., Saniga, M.: Endophysics, time, quantum and the subjective. In: Proceedings of the ZIF Interdisciplinary Research Workshop, 17–22 January 2005, Bielefeld. Springer, Berlin (2005) Google Scholar
  12. 12.
    Buccheri, R., Saniga, M., Stuckey, W.M.: The Nature of Time: Geometry, Physics and Perception. NATO Science Series II: Mathematics, Physics and Chemistry. Springer, Berlin (2003) MATHGoogle Scholar
  13. 13.
    Cartan, E.: The Theory of Spinors. Dover, New York (1952) Google Scholar
  14. 14.
    Conte, E., Khrennikov, A., Tadarello, O., Federici, A., Zbilut, J.: J. Neuroquantology 7(2), 204–212 (2009) Google Scholar
  15. 15.
    Daddesio, T.: On Minds and Symbols. de Gruyter, Amsterdam (1995) Google Scholar
  16. 16.
    Damasio, A.: Looking for Spinoza; Joy, Sorrow, and the Feeling Brain. Harvest, New York (2003) Google Scholar
  17. 17.
    Damasio, A.: Descartes’ Error: Emotion, Reason, and the Human Brain. Penguin, London (2005) Google Scholar
  18. 18.
    Damasio, A.: The Feeling of What Happens: Body and Emotion in the Making of Consciousness. Harvest, New York (2005) Google Scholar
  19. 19.
    Definitions of Cybernetics. American Society of Cybernetics. http://www.asc-cybernetics.org/foundations/definitions.htm
  20. 20.
    Fanchi, J.: Parametrized Relativistic Quantum Theory. Kluwer, Boston (1993) Google Scholar
  21. 21.
    Finkelstein, D.R.: Cosmic computation. In: Weibel, P., Ord, G., Rossler, O. (eds.) Space Time Physics and Fractality, pp. 65–82. Springer, Berlin (2005) CrossRefGoogle Scholar
  22. 22.
    Fock, V.: The Theory of Space, Time and Gravitation. Pergamon, London (1958) Google Scholar
  23. 23.
    Gisin, N., Percival, I.: arXiv:quant-ph/9701024v1
  24. 24.
    Grynberg-Zylberbaum, J.: Bases Psicofisiologicas de la Percepcion Visual. Editorial Trillas, Mexico (1981) Google Scholar
  25. 25.
    Gunther, G.: Cybernetic ontology and transjunctional operations. In: Yovits, M.C., Jacobs, G.T., Goldstein, G.D. (eds.) Self-organizing Systems, pp. 313–392. Spartan Books, Washington (1962) Google Scholar
  26. 26.
    Gunther, G.: Time, timeless logic, self-referential systems. Ann. N.Y. Acad. Sci. 138, 317–346 (1967) Google Scholar
  27. 27.
    Harms, J.: Time-lapsed reality visual metabolic rate and quantum time and space. Kybernetes 32(7/8), 113–1128 (2003) CrossRefGoogle Scholar
  28. 28.
    Heelan, P.: Space Perception and the Philosophy of Science. University of California Press, Berkeley (1989) Google Scholar
  29. 29.
    Hegel, G.F.: Wissenschaft der Logik II. Suhrkampf, Berlin (1969) Google Scholar
  30. 30.
    Hegel, G.F.: Logic. Evergreen Review (2007) Google Scholar
  31. 31.
    Hehl, F., von der Heyde, P., Kerlick, G.D., Nester, J.M.: Rev. Mod. Phys. 48, 3 (1976) CrossRefGoogle Scholar
  32. 32.
    Hehl, F., Dermott McCrea, J., Mielke, E., Ne’eman, Y.: Phys. Rep. 258, 1–157 (1995) MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Heidegger, M.: Time and Being. Harper & Row, New York (1962), pp. 1–24 Google Scholar
  34. 34.
    Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952) Google Scholar
  35. 35.
    Honig, W.M.: Nonstandard Logics and Nonstandard Metrics in Physics. Series on Knots and Everything, vol. 10. World Scientific, Singapore (1995) MATHGoogle Scholar
  36. 36.
    Horwitz, L.P., Piron, C.: Helv. Phys. Acta 46, 316 (1973) Google Scholar
  37. 37.
    Horwitz, L.P., Piron, C.: Helv. Phys. Acta 66, 694 (1993) MathSciNetGoogle Scholar
  38. 38.
    Horwitz, L.: Hypercomplex quantum mechanics. Found. Phys. 26(6), 851 (1996) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Horwitz, L.P., Shnerb, N.: Found. Phys. 28, 1509 (1998) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Horwitz, L.: Quantum interference in time. Found. Phys. 37(3/4), 734 (2007) MATHMathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Horwitz, L., Ben Zion, Y., Lewkowicz, M., Schiffer, M., Levitan, J.: Geometry of Hamiltonian chaos. Phys. Rev. Lett. 98, 234–301 (2007) CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Hu, H., Wu, M.: Spin as primordial self-referential process driving quantum mechanics, spacetime dynamics and consciousness. J. Neuroquantology 2, 41 (2004) Google Scholar
  44. 44.
    Hubel, D.H.: Eye, Brain and Vision. Scientific American Library. Freeman, New York (1988) Google Scholar
  45. 45.
    Illert, C.R.: Nuovo Cimento D 9(7), 791–784 (1987) MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Illert, C.R.: Nuovo Cimento D 11(5), 761–780 (1989) MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Illert, C.R.: Nuovo Cimento D 12(10), 1405–1421 (1990) MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Illert, C.R.: Nuovo Cimento D 12(2), 1611–1632 (1990) MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Illert, C.R.: Foundations of Theoretical Conchology, 1st edn. Hadronic Press, Palm Harbor (1992) MATHGoogle Scholar
  50. 50.
    Illert, C.R., Santilli, R.M.: Foundations of Theoretical Conchology, 2nd edn. Hadronic Press, Palm Harbor (1995) MATHGoogle Scholar
  51. 51.
    Indow, T.: The Global Structure of Visual Space. Advanced Series on Mathematical Psychology, vol. 1. World Scientific, Singapore (2004) MATHGoogle Scholar
  52. 52.
    Iran-Nejad, A.: A non-connectionist schema theory of understanding surprise-ending stories. Discourse Process. 12, 127–148 (1989) CrossRefGoogle Scholar
  53. 53.
    Johansen, S.: Outline of a Differential Epistemology. English translation of the original Norwegian published by University of Trondheim (1991). To appear Google Scholar
  54. 54.
    Kappraff, J.: Beyond Measure. World Scientific Series on Knots and Everything. World Scientific, Singapore (2002) MATHCrossRefGoogle Scholar
  55. 55.
    Kauffman, L.: De Morgan algebras, completeness and recursion. In: Proceedings of the Eighth International Symposium in Multiple Valued Logics. http://www.math.uic.edu/~kauffman/DeMorgan.pdf
  56. 56.
    Kauffman, L.: Laws of Form-An Exploration in Mathematics and Foundations. Book in progress, http://www.math.uic.edu/~kauffman/Laws.pdf
  57. 57.
    Kauffman, L.: Space and time in computation and discrete physics. Int. J. Gen. Syst. 27(1), 249–273 (1998) MATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    Kauffman, L.: Formal systems, eigenform. Kybernetes 34(1/2), 129–150 (2004) MathSciNetCrossRefGoogle Scholar
  59. 59.
    Khrennikov, A.: Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena. Fundamental Theories of Physics. Springer, Berlin (2004) MATHGoogle Scholar
  60. 60.
    Kleinert, H.: Multivalued Fields: In Condensed Matter, Electromagnetism, and Gravitation. World Scientific, Singapore (2008) MATHGoogle Scholar
  61. 61.
    Lacan, J.: Ecrits. Norton, New York (2007) Google Scholar
  62. 62.
    Land, M.C., Shnerb, N., Horwitz, L.P.: J. Math. Phys. 36, 3263 (1995) MATHMathSciNetADSCrossRefGoogle Scholar
  63. 63.
    Libet, B., Gleason, C.A., Wright, E.W., Pearl, D.K.: Time of conscious intention to act in relation to onset of cerebral activity (readiness potential). The unconscious inhibition of a freely voluntary act. Brain 106(3), 623–642 (1983) CrossRefGoogle Scholar
  64. 64.
    Liebling, M., Blu, T., Unser, M.: Fresnelets: new multiresolution wavelet bases for digital holography. IEEE Trans. Image Process. 12(1), 29–43 (2003) MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    Lin, Y.: Systemic Yoyos: Some Impacts of the Second Dimension. Auerbach Publications, Boca Raton (2008) CrossRefGoogle Scholar
  66. 66.
    Luneburg, R.: Mathematical Analysis of Binocular Vision. Edwards, Ann Arbor (1948) Google Scholar
  67. 67.
    Luhmann, N.: Theories of Distinction: Redescribing the Descriptions of Modernity. Cultural Memory in the Present. Stanford University Press, Stanford (2002) Google Scholar
  68. 68.
    Marcelja, S.: Mathematical description of the responses of simple cortical cells. J. Opt. Soc. Am. 70, 1297–1300 (1980) MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    Merleau Ponty, M.: Phenomenology of Perception. Routledge & Kegan Paul, London (1962) Google Scholar
  70. 70.
    Merleau Ponty, M.: The Visible and the Invisible. Northwestern University Press, Evanston (1968) Google Scholar
  71. 71.
    Musès, C.: Applied hypernumbers: computational concepts. Appl. Math. Comput. 3, 211–226 (1976) CrossRefGoogle Scholar
  72. 72.
    Musès, C.: Hypernumbers-II 4, 45–66 (1978) MATHGoogle Scholar
  73. 73.
    Musès, C.: Destiny and Control in Human Systems. Frontiers in System Research. Kluwer-Nijhoff, Boston (1984) Google Scholar
  74. 74.
    Nagarjuna: The Middle Way. SUNY, New York (1986). David Karlupahana, translator. Google Scholar
  75. 75.
    Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985) MATHGoogle Scholar
  76. 76.
    Raju, C.K.: The Eleven Pictures of Time. Sage, New Delhi (2003) Google Scholar
  77. 77.
    Rapoport, D.L.: On the unification of geometric and random structures through torsion fields: Brownian motions, viscous and magneto-fluid-dynamics. Found. Phys. 35(7), 1205–1244 (2005) MATHMathSciNetADSCrossRefGoogle Scholar
  78. 78.
    Rapoport, D.L.: Cartan-Weyl Dirac and Laplacian operators, Brownian motions: the quantum potential and scalar curvature, Maxwell’s and Dirac-Hestenes equations, and supersymmetric systems. Found. Phys. 7, 1383–1431 (2005) MathSciNetADSCrossRefGoogle Scholar
  79. 79.
    Rapoport, D.L.: Torsion fields, Cartan-Weyl space-time and state-space quantum geometries, their Brownian motions, and the time variables. Found. Phys. 37(4–5), 813–854 (2007) MATHMathSciNetADSCrossRefGoogle Scholar
  80. 80.
    Rapoport, D.L.: In: Adenier, G., Khrennikov, A.Yu., Lahti, P., Man’ko, V.I. (eds.) Quantum Theory: Reconsideration of Foundations—4. AIP Conference Proceedings. Springer, Berlin (2007) Google Scholar
  81. 81.
    Rapoport, D.L.: Torsion fields, propagating singularities, nilpotence, quantum jumps and the eikonal equations. In: Dubois, D., et al. (eds.), Proceedings of Casys09. AIP Proceedings Series. Springer, Berlin (December 2009, to appear). http://www2.ulg.ac.be/mathgen/CHAOS/CASYS.html
  82. 82.
    Rescher, N.: Many-Valued Logic. McGraw Hill, New York (1969) MATHGoogle Scholar
  83. 83.
    Rosch, E., Varela, F., Thompson, E.: The Embodied Mind. MIT Press, Cambridge (1991) Google Scholar
  84. 84.
    Rosen, S.M.: Dimensions of Apeiron: A Topological Phenomenology of Space, Time and Individuation. Rodopi, Amsterdam (2004) Google Scholar
  85. 85.
    Rosen, S.M.: Topologies of the Flesh: A Multidimensional Exploration of the Lifeworld. Series in Continental Thought. Ohio University Press, Athens (2006) Google Scholar
  86. 86.
    Rosen, S.M.: Quantum gravity and phenomenological philosophy. Found. Phys. 38, 556–582 (2008) MATHMathSciNetADSCrossRefGoogle Scholar
  87. 87.
    Rosen, S.M.: The Self-Evolving Cosmos: A Phenomenological Approach to Nature’s Unity-in-Diversity. Series on Knots and Everything. World Scientific, Singapore (2008) MATHCrossRefGoogle Scholar
  88. 88.
    Rossler, O.: Endophysics: The World As an Interface. World Scientific, Singapore (1998) Google Scholar
  89. 89.
    Rowlands, P.: From Zero to Infinity. World Scientific, Singapore (2008) Google Scholar
  90. 90.
    Ruhnau, E.: In: Metzinger, T. (ed.) Conscious Experience. Imprint Academic, Exeter (1996) Google Scholar
  91. 91.
    Russell, B.: Introduction to Mathematical Philosophy. MacMillan, New York (1918) Google Scholar
  92. 92.
    Pattee, H.H.: The Physics of Symbols: Bridging the Epistemic Gap. BioSystems 60, 5–21 (2001) CrossRefGoogle Scholar
  93. 93.
    Penrose, R.: Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford University Press, Oxford (1996), and references therein Google Scholar
  94. 94.
    Post, E.: Introduction to a general theory of elementary propositions. Am. J. Math. 43, 163–185 (1921) MATHMathSciNetCrossRefGoogle Scholar
  95. 95.
    Purcell, M.C.: Towards a new era (epistemological resolution analysis by through and from the Klein bottle wholeness). Ph.D. Thesis, Department of Philosophy, University of Newcastle, Australia (2006) Google Scholar
  96. 96.
    Purcell, M.C.: In: CASYS09, August 03–08, 2009, Univ. of Liège (2009, forthcoming). http://www2.ulg.ac.be/mathgen/CHAOS/CASYS.html
  97. 97.
    Pylkkanen, P.T.I.: Mind, Matter and the Implicate Order. The Frontiers Collection. Springer, Berlin (2006) Google Scholar
  98. 98.
    Schouten, J.: Ricci Calculus. Springer, Berlin (1954) MATHGoogle Scholar
  99. 99.
    Sidharth, B.G.: Chaotic Universe: From the Planck Scale to the Hubble Scale. Nova Science, New York (2002), and references therein Google Scholar
  100. 100.
    Sidharth, B.G.: The Universe of Fluctuations. Springer Series on the Fundamental Theories of Physics. Springer, Berlin (2004) Google Scholar
  101. 101.
    Snyder, H.S.: Phys. Rev. 72(2), 68–71 (1947) MATHADSCrossRefGoogle Scholar
  102. 102.
    Spencer-Brown, G.: Laws of Form. Allen & Unwin, London (1969) Google Scholar
  103. 103.
    Spinoza, B.: Ethics. Dover, New York (1955) Google Scholar
  104. 104.
    Stern, A.: Matrix Logic and Mind. Elsevier, Amsterdam (1992) MATHGoogle Scholar
  105. 105.
    Stern, A.: Quantum Theoretic Machines. Elsevier, Amsterdam (2000) MATHGoogle Scholar
  106. 106.
    Stueckelberg, E.C.: Helv. Phys. Acta 14, 322–588 (1941) MathSciNetGoogle Scholar
  107. 107.
    Swindale, N.V.: Visual cortex: Looking into a Klein bottle. Curr. Biol. 6(7), 776–779 (1996) CrossRefGoogle Scholar
  108. 108.
    Taborsky, E.: Architectonics of Semiotics. Palmgrave MacMillan, New York (1998) Google Scholar
  109. 109.
    Tanaka, S.: Topological analysis of point singularities in stimulus preference maps of the primary visual cortex. Proc. R. Soc. Lond., B Biol. Sci. 261, 81–88 (1995) ADSCrossRefGoogle Scholar
  110. 110.
  111. 111.
  112. 112.
    The Klein bottle. wikipedia.org/wiki/Kleinbottle
  113. 113.
  114. 114.
  115. 115.
    Varela, F.: Principles of Biological Autonomy. North-Holland, New York (1979) Google Scholar
  116. 116.
    Vidyabhusan, S.C.: A History of Indian Logic. Calcutta (1921). Reprinted: Munshiram Manoharlal, New Delhi (1979) Google Scholar
  117. 117.
    von Foerster, H.: Objects: tokens for eigenbehaviours. In: Observing Systems. The Systems Inquiry Series, pp. 274–285. Intersystems Publications, Salinas (1981). Google Scholar
  118. 118.
    Vrobel, S., Rossler, O.: Simultaneity: Temporal Structures and Observer Perspectives. World Scientific, Singapore (2008) CrossRefGoogle Scholar
  119. 119.
    Wu, Y., Lin, Y.: Beyond Nonstructural Quantitative Analysis: Blown-ups, Spinning Currents and Modern Science. World Scientific, Singapore (2002) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernal, Buenos AiresArgentina

Personalised recommendations