Foundations of Physics

, Volume 41, Issue 1, pp 77–87 | Cite as

Brownian Motion of a Charged Particle in Electromagnetic Fluctuations at Finite Temperature

Article

Abstract

The fluctuation-dissipation theorem is a central theorem in nonequilibrium statistical mechanics by which the evolution of velocity fluctuations of the Brownian particle under a fluctuating environment is intimately related to its dissipative behavior. This can be illuminated in particular by an example of Brownian motion in an ohmic environment where the dissipative effect can be accounted for by the first-order time derivative of the position. Here we explore the dynamics of the Brownian particle coupled to a supraohmic environment by considering the motion of a charged particle interacting with the electromagnetic fluctuations at finite temperature. We also derive particle’s equation of motion, the Langevin equation, by minimizing the corresponding stochastic effective action, which is obtained with the method of Feynman-Vernon influence functional. The fluctuation-dissipation theorem is established from first principles. The backreaction on the charge is known in terms of electromagnetic self-force given by a third-order time derivative of the position, leading to the supraohmic dynamics. This self-force can be argued to be insignificant throughout the evolution when the charge barely moves. The stochastic force arising from the supraohmic environment is found to have both positive and negative correlations, and it drives the charge into a fluctuating motion. Although positive force correlations give rise to the growth of the velocity dispersion initially, its growth slows down when correlation turns negative, and finally halts, thus leading to the saturation of the velocity dispersion. The saturation mechanism in a supraohmic environment is found to be distinctly different from that in an ohmic environment. The comparison is discussed.

Keywords

Brownian motion Supraohmic environment Langevin equation Negative correlation Fluctuation-dissipation theorem Non-equilibrium field theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pathria, P.K.: Statistical Mechanics, 2nd edn. Butterworth-Heinemann, Oxford (1996) MATHGoogle Scholar
  2. 2.
    Bhattacharjee, J.K.: Statistical Physics: Equilibrium and Non Equilibrium Aspects. Allied Pub., Indianapolis (2001) Google Scholar
  3. 3.
    Caldeira, A.O., Leggett, A.J.: Physica A 121, 587 (1983) CrossRefMathSciNetADSMATHGoogle Scholar
  4. 4.
    Caldeira, A.O., Leggett, A.J.: Ann. Phys. 149, 374 (1983) CrossRefADSGoogle Scholar
  5. 5.
    Leggett, A.J., et al.: Rev. Mod. Phys. 59, 1 (1987) CrossRefADSGoogle Scholar
  6. 6.
    Schwinger, J.: J. Math. Phys. 2, 407 (1961) CrossRefMathSciNetADSMATHGoogle Scholar
  7. 7.
    Keldysh, L.V.: Sov. Phys. JETP 20, 1018 (1965) MathSciNetGoogle Scholar
  8. 8.
    Feynman, R., Vernon, F.: Ann. Phys. 24, 118 (1963) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Grabert, H., Schramm, P., Ingold, G.L.: Phys. Rep. 168, 115 (1988) CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Hu, B.L., Paz, J.P., Zhang, Y.: Phys. Rev. D 45, 2843 (1992) CrossRefMathSciNetADSMATHGoogle Scholar
  11. 11.
    Hu, B.L., Paz, J.P., Zhang, Y.: Phys. Rev. D 47, 1576 (1993) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Johnson, P.R., Hu, B.L.: Found. Phys. 35, 1117 (2005) CrossRefMathSciNetADSMATHGoogle Scholar
  13. 13.
    Oron, O., Horwitz, L.P.: Relativistic Brownian motion in 3+1 dimensions. e-Print: math-ph/0312003
  14. 14.
    Unruh, W.G., Zurek, W.H.: Phys. Rev. D 40, 1071 (1989) CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Hsiang, J.-T., Lee, D.-S.: Phys. Rev. D 73, 065022 (2006) CrossRefADSGoogle Scholar
  16. 16.
    Hsiang, J.-T., Lee, D.-S., Wu, C.-H.: J. Korean Phys. Soc. 49, 742 (2006) Google Scholar
  17. 17.
    Rohrlich, F.: Phys. Rev. E 77, 046609 (2008) CrossRefADSGoogle Scholar
  18. 18.
    Rohrlich, F.: Classical Charged Particles, 3rd edn. World Scientific, Singapore (2007) MATHGoogle Scholar
  19. 19.
    Hsiang, J.-T., Wu, T.-H., Lee, D.-S.: Phys. Rev. D 77, 105021 (2008) CrossRefADSGoogle Scholar
  20. 20.
    Hsiang, J.-T., Wu, T.-H., Lee, D.-S.: Stochastic dynamics of a point charge under electromagnetic squeezed vacuum fluctuations. arXiv:0809.4100 [quant-ph]
  21. 21.
    Yu, H.-W., Ford, L.H.: Phys. Rev. D 70, 065009 (2004) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Ford, L.H., Roman, T.A.: Phys. Rev. D 72, 105010 (2005) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998) Google Scholar
  24. 24.
    Gardiner, C.W., Zoller, P.: Quantum Noise, 2nd edn. Springer, Berlin (2000) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsNational Dong Hwa UniversityHualienROC

Personalised recommendations