Advertisement

Foundations of Physics

, Volume 39, Issue 10, pp 1109–1138 | Cite as

Boson-Fermion Unification, Superstrings, and Bohmian Mechanics

  • Hrvoje Nikolić
Article

Abstract

Bosonic and fermionic particle currents can be introduced in a more unified way, with the cost of introducing a preferred spacetime foliation. Such a unified treatment of bosons and fermions naturally emerges from an analogous superstring current, showing that the preferred spacetime foliation appears only at the level of effective field theory, not at the fundamental superstring level. The existence of the preferred spacetime foliation allows an objective definition of particles associated with quantum field theory in curved spacetime. Such an objective definition of particles makes the Bohmian interpretation of particle quantum mechanics more appealing. The superstring current allows a consistent Bohmian interpretation of superstrings themselves, including a Bohmian description of string creation and destruction in terms of string splitting. The Bohmian equations of motion and the corresponding probabilistic predictions are fully relativistic covariant and do not depend on the preferred foliation.

Keywords

Boson Fermion Unification Superstring Bohmian mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gates, S.J. Jr., Grisaru, M.T., Rocek, M., Siegel, W.: Front. Phys. 58, 1 (1983). hep-th/0108200 MathSciNetGoogle Scholar
  2. 2.
    Zwiebach, B.: A First Course in String Theory. Cambridge University Press, Cambridge (2004) MATHGoogle Scholar
  3. 3.
    Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1987) MATHGoogle Scholar
  4. 4.
    Polchinski, J.: String Theory. Cambridge University Press, Cambridge (1998) Google Scholar
  5. 5.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964) Google Scholar
  6. 6.
    Bohm, D.: Phys. Rev. 85, 166 (1952) CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Bohm, D.: Phys. Rev. 85, 180 (1952) CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Bohm, D., Hiley, B.J.: Phys. Rep. 144, 323 (1987) CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Bohm, D., Hiley, B.J., Kaloyerou, P.N.: Phys. Rep. 144, 349 (1987) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Holland, P.R.: Phys. Rep. 224, 95 (1993) CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993) Google Scholar
  12. 12.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987) Google Scholar
  13. 13.
    Horowitz, G.T.: New J. Phys. 7, 201 (2005) CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Seiberg, N.: hep-th/0601234
  15. 15.
    Nikolić, H.: Eur. Phys. J. C 50, 431 (2007) CrossRefADSGoogle Scholar
  16. 16.
    Nikolić, H.: Eur. Phys. J. C 47, 525 (2006) CrossRefADSGoogle Scholar
  17. 17.
    Struyve, W., Westman, H.: quant-ph/0602229
  18. 18.
    Dürr, D., Goldstein, S., Minch-Berndl, K., Zanghì, N.: Phys. Rev. A 60, 2729 (1999) CrossRefADSGoogle Scholar
  19. 19.
    Horton, G., Dewdney, C.: J. Phys. A 35, 10117 (2002) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Horton, G., Dewdney, C.: J. Phys. A 37, 11935 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Nikolić, H.: Found. Phys. Lett. 17, 363 (2004) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nikolić, H.: Found. Phys. Lett. 18, 123 (2005) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Nikolić, H.: Eur. Phys. J. C 42, 365 (2005) CrossRefADSGoogle Scholar
  24. 24.
    Nikolić, H.: Int. J. Mod. Phys. D 15, 2171 (2006). Honorable Mention of the Gravity Research Foundation 2006 Essay Competition MATHCrossRefADSGoogle Scholar
  25. 25.
    Nikolić, H.: AIP Conf. Proc. 844, 272 (2006). quant-ph/0512065 CrossRefADSGoogle Scholar
  26. 26.
    Birell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, New York (1982) Google Scholar
  27. 27.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields. McGraw-Hill, New York (1965) MATHGoogle Scholar
  28. 28.
    Nikolić, H.: Found. Phys. 37, 1563 (2007) MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Polchinski, J.: hep-th/9411028
  30. 30.
    Kemmer, N.: Proc. R. Soc. A 173, 91 (1939) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Ghose, P., Home, D., Sinha Roy, M.N.: Phys. Lett. A 183, 267 (1993) CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Struyve, W.: quant-ph/0506243
  33. 33.
    Nikolić, H.: Phys. Lett. B 527, 119 (2002) MATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Nikolić, H.: Int. J. Mod. Phys. D 12, 407 (2003) MATHCrossRefADSGoogle Scholar
  35. 35.
    Nikolić, H.: Gen. Relativ. Gravit. 37, 297 (2005) MATHCrossRefADSGoogle Scholar
  36. 36.
    Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1984) Google Scholar
  37. 37.
    Schweber, S.S.: An Introduction to Relativistic Quantum Field Theory. Harper & Row, New York (1961) Google Scholar
  38. 38.
    Berndl, K., Dürr, D., Goldstein, S., Zanghì, N.: Phys. Rev. A 53, 2062 (1996) CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Nikolić, H.: Found. Phys. Lett. 18, 549 (2005) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: J. Phys. A 36, 4143 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Phys. Rev. Lett. 93, 090402 (2004) CrossRefMathSciNetGoogle Scholar
  42. 42.
    de Vega, H.J., Mittelbrunn, J.R., Medrano, M.R., Sánchez, N.: Phys. Rev. D 52, 4609 (1995) CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Nikolić, H.: arXiv:0705.3542
  44. 44.
    Daumer, M., Dürr, D., Goldstein, S., Zanghì, N.: quant-ph/9601013
  45. 45.
    Goldstein, S., Taylor, J., Tumulka, R., Zanghì, N.: J. Phys. A 38, 1567 (2005) MATHCrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Stückelberg, E.C.G.: Helv. Phys. Acta 14, 322 (1941) Google Scholar
  47. 47.
    Stückelberg, E.C.G.: Helv. Phys. Acta 14, 588 (1941) MATHGoogle Scholar
  48. 48.
    Horwitz, L.P., Piron, C.: Helv. Phys. Acta 46, 316 (1973) Google Scholar
  49. 49.
    Kyprianidis, A.: Phys. Rep. 155, 1 (1987) CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    Fanchi, J.R.: Found. Phys. 23, 487 (1993) CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    Nikolić, H.: Int. J. Quantum Inf. 7, 595 (2009) MATHCrossRefGoogle Scholar
  52. 52.
    Nikolić, H.: arXiv:0904.2287
  53. 53.
    Tumulka, R.: J. Stat. Phys. 125, 821 (2006) CrossRefADSGoogle Scholar
  54. 54.
    Nikolić, H.: Found. Phys. 38, 869 (2008) MATHCrossRefADSMathSciNetGoogle Scholar
  55. 55.
    Wiseman, H.M.: New J. Phys. 9, 165 (2007) CrossRefADSGoogle Scholar
  56. 56.
    Dürr, D., Goldstein, S., Zanghì, N.: arXiv:0808.3324

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Theoretical Physics DivisionRudjer Bošković InstituteZagrebCroatia

Personalised recommendations