Advertisement

Foundations of Physics

, Volume 39, Issue 9, pp 997–1022 | Cite as

Detection Model Based on Representation of Quantum Particles by Classical Random Fields: Born’s Rule and Beyond

  • Andrei Khrennikov
Article

Abstract

Recently a new attempt to go beyond quantum mechanics (QM) was presented in the form of so called prequantum classical statistical field theory (PCSFT). Its main experimental prediction is violation of Born’s rule which provides only an approximative description of real probabilities. We expect that it will be possible to design numerous experiments demonstrating violation of Born’s rule. Moreover, recently the first experimental evidence of violation was found in the triple slit interference experiment, see Sinha, et al. (Foundations of Probability and Physics-5. American Institute of Physics, Ser. Conference Proceedings, vol. 1101, pp. 200–207, 2009). Although this experimental test was motivated by another prequantum model, it can be definitely considered as at least preliminary confirmation of the main prediction of PCSFT. In our approach quantum particles are just symbolic representations of “prequantum random fields,” e.g., “electron-field” or “neutron-field”; photon is associated with classical random electromagnetic field. Such prequantum fields fluctuate on time and space scales which are essentially finer than scales of QM, cf. ’t Hooft’s attempt to go beyond QM (see ’t Hooft arXiv:hep-th/0105105, 2001; arXiv:quant-ph/0212095, 2002; arXiv:quant-ph/0701097, 2007). In this paper we elaborate a detection model in the PCSFT-framework. In this model classical random fields (corresponding to “quantum particles”) interact with detectors inducing probabilities which match with Born’s rule only approximately. Thus QM arises from PCSFT as an approximative theory. New tests of violation of Born’s rule are proposed.

Keywords

Beyond quantum Violation of Born’s rule Prequantum random field Detection theory Deviation from quantum predictions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sinha, U., Couteau, C., Medendorp, Z., Söllner, I., Laflamme, R., Sorkin, R., Weihs, G.: Testing Born’s rule in quantum mechanics with a triple slit experiment. In: Accardi, L., Adenier, G., Fuchs, C., Jaeger, G., Khrennikov, A., Larsson, J.-A., Stenholm, S. (eds.) Foundations of Probability and Physics-5, Växjö, August, 2008. American Institute of Physics, Ser. Conference Proceedings, vol. 1101, pp. 200–207. Melville, NY (2009) Google Scholar
  2. 2.
    ’t Hooft, G.: Quantum mechanics and determinism. arXiv:hep-th/0105105 (2001)
  3. 3.
    ’t Hooft, G.: Determinism beneath quantum mechanics. arXiv:quant-ph/0212095 (2002)
  4. 4.
    ’t Hooft, G.: The free-will postulate in quantum mechanics. arXiv:quant-ph/0701097 (2007)
  5. 5.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777–780 (1935) MATHCrossRefADSGoogle Scholar
  6. 6.
    Khrennikov, A.: J. Russ. Laser Res. 28, 244–254 (2007) CrossRefGoogle Scholar
  7. 7.
    De Muynck, W.M.: Interpretations of quantum mechanics, and interpretations of violations of Bell’s inequality. In: Khrennikov, A. (ed.) Foundations of Probability and Physics, Växjö, November, 2000. Series PQ-QP: Quantum Probability and White Noise Analysis, vol. 13, pp. 95–104. World Scientific, Singapore (2001) Google Scholar
  8. 8.
    Andreev, V.A., Man’ko, V.I.: Theor. Math. Phys. 140, 1135–1145 (2004) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Khrennikov, A.: Theor. Math. Phys. 157(1), 1448–1460 (2008) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    De Broglie, L.: The Current Interpretation of Wave Mechanics. A Critical Study. Elsevier, Amsterdam (1964) Google Scholar
  11. 11.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997) Google Scholar
  12. 12.
    Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973) Google Scholar
  13. 13.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995) Google Scholar
  14. 14.
    De la Pena, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996) Google Scholar
  15. 15.
    Boyer, T.H.: A brief survey of stochastic electrodynamics. In: Barut, A.O. (ed.) Foundations of Radiation Theory and Quantum Electrodynamics, pp. 141–162. Plenum, New York (1980) Google Scholar
  16. 16.
    Nelson, E.: Quantum Fluctuation. Princeton Univ. Press, Princeton (1985) Google Scholar
  17. 17.
    Davidson, M.: J. Math. Phys. 20, 1865–1870 (1979) CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Davidson, M.: Stochastic models of quantum mechanics—a perspective. In: Adenier, G., Fuchs, C., Khrennikov, A. (eds.) Foundations of Probability and Physics-4. American Institute of Physics, Ser. Conference Proceedings, vol. 889, pp. 106–119. Melville, NY (2007) Google Scholar
  19. 19.
    Manko, V.I.: J. Russ. Laser Res. 17, 579–584 (1996) CrossRefGoogle Scholar
  20. 20.
    Manko, O.V., Manko, V.I.: J. Russ. Laser Res. 25, 477–492 (2004) CrossRefGoogle Scholar
  21. 21.
    Bracken, A.J.: Rep. Math. Phys. 57, 17–26 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Bracken, A.J., Wood, J.G.: Phys. Rev. A 73, 012104 (2006) CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Elze, T.: The attractor and the quantum states. arXiv:0806.3408 (2008)
  24. 24.
    Khrennikov, A.: J. Phys. A: Math. Gen. 38, 9051–9073 (2005) MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Khrennikov, A.: Phys. Lett. A 357, 171–176 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Khrennikov, A.: Nuovo Cimento B 121, 1005–1021 (2006) ADSMathSciNetGoogle Scholar
  27. 27.
    Khrennikov, A.: Found. Phys. Lett. 18, 637–650 (2006) CrossRefMathSciNetGoogle Scholar
  28. 28.
    De Muynck, W.M.: Foundations of Quantum Mechanics, an Empiricists Approach. Kluwer, Dordrecht (2002) Google Scholar
  29. 29.
    D’Ariano, G.M.: Operational axioms for quantum mechanics. In: Adenier, G., Fuchs, C., Khrennikov, A. (eds.) Foundations of Probability and Physics-4. American Institute of Physics, Ser. Conference Proceedings, vol. 889, pp. 79–105. Melville, NY (2007) Google Scholar
  30. 30.
    Khrennikov, A.: Born’s rule from classical random fields. Phys. Lett. A 372(44), 6588–6592 (2008) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Haag, R.: Local Quantum Physics. Springer, Heidelberg (1996) MATHGoogle Scholar
  32. 32.
    Haag, R.: Questions in quantum physics: a personal view. arXiv:hep-th/0001006 (2000)
  33. 33.
    Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 81, 5039–5042 (1998) MATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Weihs, G.: A test of Bell’s inequality with spacelike separation. In: Adenier, G., Fuchs, C., Khrennikov, A. (eds.) Foundations of Probability and Physics-4. American Institute of Physics, Ser. Conference Proceedings, vol. 889, pp. 250–262. Melville, NY (2007) Google Scholar
  35. 35.
    Aspect, A.: Trois tests expérimentaux des inégalités de Bell par mesure de corrélation de polarisation de photons. PhD thesis No. 2674, Université de Paris-Sud, Centre D’Orsay (1983) Google Scholar
  36. 36.
    Khrennikov, A. (ed.): Foundations of Probability and Physics. Series PQ-QP: Quantum Probability and White Noise Analysis, vol. 13. World Scientific, Singapore (2001) MATHGoogle Scholar
  37. 37.
    Khrennikov, A. (ed.): Quantum Theory: Reconsideration of Foundations. Ser. Math. Model, vol. 2. Växjö University Press, Växjö (2002). Electronic volume: http://www.vxu.se/msi/forskn/publications.html Google Scholar
  38. 38.
    Adenier, G., Khrennikov, A., Nieuwenhuizen, Th.M. (eds.): Quantum Theory: Reconsideration of Foundations-3. American Institute of Physics, Ser. Conference Proceedings, vol. 810. Melville, NY (2006) Google Scholar
  39. 39.
    Adenier, G., Fuchs, C., Khrennikov, A. (eds.): Foundations of Probability and Physics-3. American Institute of Physics, Ser. Conference Proceedings, vol. 889. Melville, NY (2007) Google Scholar
  40. 40.
    Grangier, P., Roger, G., Aspect, A.: Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986) CrossRefADSGoogle Scholar
  41. 41.
    Grangier, P.: Etude expérimentale de propriétés non-classiques de la lumière: interférence à un seul photon. Université de Paris-Sud, Centre D’Orsay (1986) Google Scholar
  42. 42.
    Marshall, T., Santos, E.: Comment on “Experimental evidence for a photon anticorrelation Effect on a beam splitter: a new light on single-photon interferences”. Europhys. Lett. 3, 293–296 (1987) CrossRefADSGoogle Scholar
  43. 43.
    Hardy, L.: Can classical wave theory explain the photon anticorrelation effect on a beam splitter? Europhys. Lett. 15, 591–595 (1991) CrossRefADSGoogle Scholar
  44. 44.
    Sorkin, R.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9, 3119–3127 (1994). arXiv:gr-qc/9401003 MATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Khrennikov, A.: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer, Dordrecht (1997) MATHGoogle Scholar
  46. 46.
    Khrennikov, A.: Interpretations of Probability, 2nd edn. (completed). De Gruyter, Berlin (2009) MATHCrossRefGoogle Scholar
  47. 47.
    Siegel, A., Wiener, N.: Phys. Rev. 101, 429 (1956) CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    Siegel, A., Wiener, N.: Phys. Rev. 91, 1551 (1953) MATHCrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Siegel, A., Wiener, N.: Nuovo Cimento, Ser. X 2(4), 982 (1955) CrossRefMathSciNetGoogle Scholar
  50. 50.
    Wiener, N., Siegel, A., Rankin, B., : Differential Space, Quantum Systems, and Prediction. MIT Press, Cambridge (1966) MATHGoogle Scholar
  51. 51.
    Bohm, D., Bub, J.: Rev. Mod. Phys. 38(3), 453 (1966) MATHCrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Bub, J.: Int. J. Theor. Phys. 2(2), 101 (1969) CrossRefMathSciNetGoogle Scholar
  53. 53.
    Belinfante, F.J.: A Survey of Hidden-Variable Theories. Pergamen Press, Oxford (1973) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.International Center for Mathematical Modelling in Physics and Cognitive SciencesUniversity of VäxjöVaxjoSweden

Personalised recommendations