Advertisement

Foundations of Physics

, Volume 39, Issue 5, pp 411–432 | Cite as

Intrinsic Properties of Quantum Systems

  • P. Hájíček
  • J. Tolar
Article

Abstract

A new realist interpretation of quantum mechanics is introduced. Quantum systems are shown to have two kinds of properties: the usual ones described by values of quantum observables, which are called extrinsic, and those that can be attributed to individual quantum systems without violating standard quantum mechanics, which are called intrinsic. The intrinsic properties are classified into structural and conditional. A systematic and self-consistent account is given. Much more statements become meaningful than any version of Copenhagen interpretation would allow. A new approach to classical properties and measurement problem is suggested. A quantum definition of classical states is proposed.

Keywords

Intrinsic vs. extrinsic properties of quantum systems Structural and conditional intrinsic properties Classicality Classical property of quantum linear chain Quantum measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002) MATHGoogle Scholar
  2. 2.
    Nikolic, H.: Quantum mechanics: myths and facts. arXiv:quant-ph/0609163
  3. 3.
    Isham, C.J.: Lectures on Quantum Theory. Mathematical and Structural Foundations. Imperial College Press, London (1995) MATHGoogle Scholar
  4. 4.
    d’Espagnat, B.: Veiled Reality. Addison–Wesley, Reading (1995) Google Scholar
  5. 5.
    Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1995) MATHGoogle Scholar
  6. 6.
    Ludwig, G.: Foundations of Quantum Mechanics. Springer, Berlin (1983) MATHGoogle Scholar
  7. 7.
    Kraus, K.: States, Effects, and Operations. Lecture Notes in Physics, vol. 190. Springer, Berlin (1983) MATHCrossRefGoogle Scholar
  8. 8.
    Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997) MATHGoogle Scholar
  9. 9.
    Dirac, P.A.M.: Quantum Mechanics, 4th edn. Clarendon Press, Oxford (1958) MATHGoogle Scholar
  10. 10.
    von Neumann, J.: Mathematical Foundation of Quantum Mechanics. Princeton University Press, Princeton (1955) Google Scholar
  11. 11.
    Tolar, J., Hájíček, P.: Phys. Lett. A 353, 19 (2006) CrossRefADSGoogle Scholar
  12. 12.
    Schroeck, F.E.: Quantum Mechanics on Phase Space. Kluwer Academic, Dordrecht (1996) MATHGoogle Scholar
  13. 13.
    Hájíček, P.: Quantum model of classical mechanics: maximum entropy packets. arXiv:0901.0436
  14. 14.
    Piron, C.: Foundations of Quantum Physics. Benjamin, Reading (1976) MATHGoogle Scholar
  15. 15.
    Piron, C.: Found. Phys. 2, 287 (1972) CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Birkhoff, G., von Neumann, J.: Ann. Math. 37, 823 (1936) CrossRefGoogle Scholar
  17. 17.
    Thirring, W.: Lehrbuch der Mathematischen Physik. Springer, Berlin (1980) MATHGoogle Scholar
  18. 18.
    Leggett, A.J.: J. Phys.: Condens. Matter 14, R415 (2002) CrossRefADSGoogle Scholar
  19. 19.
    Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the Appearance of Classical World in Quantum Theory. Springer, Berlin (1996) MATHGoogle Scholar
  20. 20.
    Exner, F.: Vorlesungen über die physikalischen Grundlagen der Naturwissenschaften. Deuticke, Leipzig (1922) Google Scholar
  21. 21.
    Born, M.: Phys. Bl. 11, 49 (1955) Google Scholar
  22. 22.
    Jaynes, E.T.: Probability Theory. The Logic of Science. Cambridge University Press, Cambridge (2003) MATHGoogle Scholar
  23. 23.
    van Kampen, N.G.: Physica A 194, 542 (1993) CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003) CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Poulin, D.: Phys. Rev. A 71, 022102 (2005) CrossRefADSGoogle Scholar
  26. 26.
    Kofler, J., Brukner, Č.: Phys. Rev. Lett. 99, 180403 (2007) CrossRefADSGoogle Scholar
  27. 27.
    Hepp, K.: Helv. Phys. Acta 45, 237 (1972) Google Scholar
  28. 28.
    Bell, J.S.: Helv. Phys. Acta 48, 93 (1975) MATHMathSciNetGoogle Scholar
  29. 29.
    Bóna, P.: Acta Phys. Slov. 23, 149 (1973) Google Scholar
  30. 30.
    Bóna, P.: Acta Phys. Slov. 25, 3 (1975) Google Scholar
  31. 31.
    Bóna, P.: Acta Phys. Slov. 27, 101 (1977) Google Scholar
  32. 32.
    Sewell, G.L.: Quantum Mechanics and its Emergent Macrophysics. Princeton University Press, Princeton (2002) MATHGoogle Scholar
  33. 33.
    Bell, J.S.: Against ‘measurement’. In: Miller, A.I. (ed.) Sixty Two Years of Uncertainty. Plenum, New York (1990) Google Scholar
  34. 34.
    Wallace, D.: The quantum measurement problem: state of play. arXiv:0712.0149v1 [quant-ph]
  35. 35.
    Jauch, J.M.: Helv. Phys. Acta 37, 293 (1964) MATHMathSciNetGoogle Scholar
  36. 36.
    Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1976) Google Scholar
  37. 37.
    Rutherford, D.E.: Proc. R. Soc. (Edinb.), Ser. A 62, 229 (1947) MathSciNetGoogle Scholar
  38. 38.
    Rutherford, D.E.: Proc. R. Soc. (Edinb.), Ser. A 63, 232 (1951) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  2. 2.Department of Physics, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical UniversityPragueCzech Republic

Personalised recommendations