Advertisement

Foundations of Physics

, Volume 39, Issue 3, pp 215–236 | Cite as

Development of the Tetron Model

  • Bodo Lampe
Article

Abstract

The main features of the tetron model of elementary particles are discussed in the light of recent developments, in particular the formation of strong and electroweak vector bosons and a microscopic understanding of how the observed tetrahedral symmetry of the fermion spectrum may arise.

Keywords

Tetrons Quarks Leptons Permutation symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohapatra, R.N., Pati, J.C.: Phys. Rev. D 11(566), 2558 (1975) CrossRefADSGoogle Scholar
  2. 2.
    Lampe, B.: J. Phys. G 34, 1 (2007). arXiv:hep-ph/0610270 (2006); see also arXiv:hep-ph/9810417 (1998) CrossRefGoogle Scholar
  3. 3.
    van der Waerden, B.L.: Algebra. Springer, Berlin (1958) Google Scholar
  4. 4.
    Lampe, B.: in preparation Google Scholar
  5. 5.
    Taylor, P.R.: Molecular symmetry and quantum chemistry. In: Roos, B. (ed.) Lecture Notes in Quantum Chemistry. Springer, Berlin (1992) Google Scholar
  6. 6.
    Johnson, R.C.: Phys. Lett. B 114, 147 (1982) CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Peskin, M.E., Takeuchi, T.: Phys. Rev. Lett. 65, 964 (1990) CrossRefADSGoogle Scholar
  8. 8.
    Griffith, J.S.: Irreducible Tensor Methods for Molecular Symmetry Groups. Dover, New York (2006) Google Scholar
  9. 9.
    Conway, J., Smith, D.: On Octonions and Quaternions. Peters, Natick (2003). ISBN:1-56881-134-9 MATHGoogle Scholar
  10. 10.
    Kantor, I.L., Solodovnikov, A.S.: Hypercomplex Numbers—an Elementary Introduction to Algebras. Springer, Berlin (1989) MATHGoogle Scholar
  11. 11.
    Schafer, R.D.: An Introduction to Nonassociative Algebras. Academic Press, New York (1966) MATHGoogle Scholar
  12. 12.
    Sudbery, A.: J. Math. Phys. 24, 1986 (1983) MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Jordan, P., von Neumann, J., Wigner, E.P.: Ann. Math. N.Y. 35, 29 (1934) CrossRefGoogle Scholar
  14. 14.
    Adler, S.: Quaternion Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1994) Google Scholar
  15. 15.
    Baugh, J., Finkelstein, D., Galiautdinov, A., Saller, H.: J. Math. Phys. 42, 1489 (2001) MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Dixon, G.M.: Invariant representations of the Leech lattice. hep-th9504040 (1995), and references therein

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität RegensburgLengdorfGermany

Personalised recommendations