Skip to main content
Log in

Transition Effect Matrices and Quantum Markov Chains

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A transition effect matrix (TEM) is a quantum generalization of a classical stochastic matrix. By employing a TEM we obtain a quantum generalization of a classical Markov chain. We first discuss state and operator dynamics for a quantum Markov chain. We then consider various types of TEMs and vector states. In particular, we study invariant, equilibrium and singular vector states and investigate projective, bistochastic, invertible and unitary TEMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Accardi, L.: Nonrelativistic quantum mechanics as a noncommutative Markov process. Adv. Math. 20, 329–366 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Accardi, L.: Topics in quantum probability. Phys. Rep. 77, 169–192 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  3. Accardi, L., Frigerio, A.: Markovian cocycles. Proc. R. Irish Acad. 83, 251–263 (1983)

    MATH  MathSciNet  Google Scholar 

  4. Arias, A., Gheondea, A., Gudder, S.: Fixed points of quantum operations. J. Math. Phys. 43, 5872–5881 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Busch, P., Grabowski, M., Lahti, P.J.: Operational Quantum Physics. Springer, Berlin (1995)

    MATH  Google Scholar 

  6. Busch, P., Heinonen, T., Lahti, P.J.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155–176 (2007)

    Article  ADS  Google Scholar 

  7. Cassinelli, G., De Vito, E., Lahti, P.J., Leviero, A.: Theory of Symmetry in Quantum Mechanics with an Application to the Galilei Group. Springer, Berlin (2004)

    MATH  Google Scholar 

  8. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, New York (1976)

    MATH  Google Scholar 

  9. Dvurečenskij, A., Lahti, P., Ylinen, K.: Positive operator measures determined by their moment sequences. Rep. Math. Phys. 45, 139–146 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Dvurečenskij, A., Lahti, P., Ylinen, K.: The uniqueness question in the multidimensional moment problem with applications to phase space observables. Rep. Math. Phys. 50, 55–68 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  12. Fannes, M., Nachtergaele, B., Werner, R.: Correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Flitney, A., Abbott, D., Johnson, N.: Quantum random walks with history dependence. Rep. Math. Phys. A 37, 7581–7591 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Gheondea, A., Gudder, S.: Sequential product of quantum effects. Proc. Am. Math. Soc. 132, 503–512 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gudder, S.: A structure for quantum measurements. Rep. Math. Phys. 55, 249–267 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Gudder, S.: Sequential products of quantum measurements. Rep. Math. Phys. 60, 273–288 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Gudder, S.: Quantum Markov chains, J. Math. Phys. (2008, to appear)

  18. Gudder, S., Greechie, R.: Sequential products on effect algebras. Rep. Math. Phys. 49, 87–111 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Gudder, S., Nagy, G.: Sequential quantum measurements. J. Math. Phys. 42, 5212–5222 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  21. Holevo, A.S.: Statistical Structures of Quantum Theory. Springer, Berlin (2001)

    Google Scholar 

  22. Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44, 307–327 (2003)

    Article  ADS  Google Scholar 

  23. Kendon, V.: A random walk approach to quantum algorithms. Phil. Trans. R. Soc. 92, 3407–3422 (2006)

    ADS  MathSciNet  Google Scholar 

  24. Kiukas, J., Lahti, P.: Quantization and noiseless measurements. J. Phys. A 40, 2083–2091 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Kiukas, J., Lahti, P., Ylinen, K.: Moment operators of the Cartesian margins of the phase space observables. J. Math. Phys. 46, 1–11 (2005)

    Article  MathSciNet  Google Scholar 

  26. Kiukas, J., Lahti, P., Ylinen, K.: Normal covariant quantization maps. J. Math. Anal. Appl. 319, 783–801 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kiukas, J., Lahti, P., Ylinen, K.: Phase space quantization and the operator moment problem. J. Math. Phys. 47, 201–219 (2006)

    Article  MathSciNet  Google Scholar 

  28. Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1, 345–454 (2002)

    Article  MathSciNet  Google Scholar 

  29. Kraus, K.: States, Effects and Operations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  30. Lahti, P., Maczyński, M., Ylinen, K.: The moment operators of phase space observables and their number margins. Rep. Math. Phys. 41, 2181–2189 (1999)

    Google Scholar 

  31. Lahti, P., Pellonpaa, J.-P., Ylinen, K.: Operator integrals and phase space observables. J. Math. Phys. 40, 319–331 (1998)

    MathSciNet  Google Scholar 

  32. Ludwig, G.: Foundations of Quantum Mechanics, vol. I. Springer, Berlin (1983)

    Google Scholar 

  33. Nielsen, M., Chuang, J.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Gudder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudder, S. Transition Effect Matrices and Quantum Markov Chains. Found Phys 39, 573–592 (2009). https://doi.org/10.1007/s10701-008-9269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9269-2

Keywords

Navigation