Skip to main content
Log in

Dirac-Type Equations in a Gravitational Field, with Vector Wave Function

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

An analysis of the classical-quantum correspondence shows that it needs to identify a preferred class of coordinate systems, which defines a torsionless connection. One such class is that of the locally-geodesic systems, corresponding to the Levi-Civita connection. Another class, thus another connection, emerges if a preferred reference frame is available. From the classical Hamiltonian that rules geodesic motion, the correspondence yields two distinct Klein-Gordon equations and two distinct Dirac-type equations in a general metric, depending on the connection used. Each of these two equations is generally-covariant, transforms the wave function as a four-vector, and differs from the Fock-Weyl gravitational Dirac equation (DFW equation). One obeys the equivalence principle in an often-accepted sense, whereas the DFW equation obeys that principle only in an extended sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colella, R., Overhauser, A.W., Werner, S.A.: Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975)

    Article  ADS  Google Scholar 

  2. Werner, S.A., Staudenmann, J.A., Colella, R.: Effect of Earth’s rotation on the quantum mechanical phase of the neutron. Phys. Rev. Lett. 42, 1103–1107 (1979)

    Article  ADS  Google Scholar 

  3. Riehle, F., Kisters, Th., Witte, A., Helmcke, J., Bordé, Ch.J.: Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 67, 177–180 (1991)

    Article  ADS  Google Scholar 

  4. Kasevich, M., Chu, S.: Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991)

    Article  ADS  Google Scholar 

  5. Nesvizhevsky, V.V., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002)

    Article  ADS  Google Scholar 

  6. Overhauser, A.W., Colella, R.: Experimental test of gravitationally induced quantum interference. Phys. Rev. Lett. 33, 1237–1240 (1974)

    Article  ADS  Google Scholar 

  7. Luschikov, V.I., Frank, A.I.: Quantum effects occuring when ultracold neutrons are stored on a plane. JETP Lett. 28, 559–561 (1978)

    ADS  Google Scholar 

  8. Voronin, A.Yu., Abele, H., Baeßler, S., Nesvizhevsky, V.V., Petukhov, A.K., Protasov, K.V., Westphal, A.: Quantum motion of a neutron in a waveguide in the gravitational field. Phys. Rev. D 73, 044029 (2006)

    Article  ADS  Google Scholar 

  9. de Oliveira, C.G., Tiomno, J.: Representations of Dirac equation in general relativity. Nuovo Cim. 24, 672–687 (1962)

    Article  MATH  Google Scholar 

  10. Mashhoon, B.: Neutron interferometry in a rotating frame of reference. Phys. Rev. Lett. 61, 2639–2642 (1988)

    Article  ADS  Google Scholar 

  11. Hehl, F.W., Ni, W.T.: Inertial effects of a Dirac particle. Phys. Rev. D 42, 2045–2048 (1990)

    Article  ADS  Google Scholar 

  12. Varjú, K., Ryder, L.H.: The effect of Schwarzschild field on spin 1/2 particles compared to the effect of a uniformly accelerating frame. Phys. Lett. A 250, 263–269 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Obukhov, Yu.N.: Spin, gravity, and inertia. Phys. Rev. Lett. 86, 192–195 (2001). arXiv:gr-qc/0012102

    Article  ADS  MathSciNet  Google Scholar 

  14. Arminjon, M.: Post-Newtonian equation for the energy levels of a Dirac particle in a static metric. Phys. Rev. D 74, 065017 (2006). arXiv:gr-qc/0606036

    ADS  Google Scholar 

  15. Boulanger, N., Buisseret, F., Spindel, Ph.: On bound states of Dirac particles in gravitational fields. Phys. Rev. D 74, 125014 (2006). arXiv:hep-th/0610207

    Article  ADS  MathSciNet  Google Scholar 

  16. Arminjon, M.: Dirac equation from the Hamiltonian and the case with a gravitational field. Found. Phys. Lett. 19, 225–247 (2006). arXiv:gr-qc/0512046

    Article  MATH  MathSciNet  Google Scholar 

  17. Schulten, K.: Relativistic quantum mechanics. In: Notes on Quantum Mechanics, online course of the University of Illinois at Urbana-Champaign by the same author (1999), http://www.ks.uiuc.edu/Services/Class/PHYS480/qm_PDF/chp10.pdf

  18. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw–Hill, New York (1964)

    Google Scholar 

  19. Arminjon, M., Reifler, F.: Dirac equation: Representation independence and tensor transformation. Braz. J. Phys. 38, 248–258 (2008). arXiv:0707.1829 (quant-ph)

    Article  Google Scholar 

  20. Pal, P.B.: Representation-independent manipulations with Dirac spinors. Preprint arXiv:physics/0703214 (2007)

  21. Brill, D.R., Wheeler, J.A.: Interaction of neutrinos and gravitational field. Rev. Mod. Phys. 29, 465–479 (1957). Erratum: Rev. Mod. Phys. 33, 623–624 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Aldrovandi, R., Pereira, J.G., Vu, K.H.: Gravity and the quantum: are they reconcilable? In: Quantum Theory: Reconsideration of Foundations-3. Växjö University, Sweden (2005). arXiv:gr-qc/0509051

    Google Scholar 

  23. Will, C.M.: Theory and Experiment in Gravitational Physics, 2nd edn. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  24. Villalba, V.M., Greiner, V.M.: Creation of scalar and Dirac particles in the presence of a time varying electric field in an anisotropic Bianchi type I universe. Phys. Rev. D 65, 025007 (2001). arXiv:gr-qc/0112006

    ADS  Google Scholar 

  25. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982), Sect. 3.2

    MATH  Google Scholar 

  26. Weyl, H.: Elektron und Gravitation. Z. Phys. 56, 330–352 (1929). [English translation in L. O’Raifeartaigh: The Dawning of Gauge Theory, pp. 121–144. Princeton University Press (1997)]

    ADS  Google Scholar 

  27. Hartley, D.: Normal frames for non-Riemannian connections. Class. Quantum Gravity 12, L103–L105 (1995). arXiv:gr-qc/9510013

    Article  ADS  MathSciNet  Google Scholar 

  28. Iliev, B.Z.: Normal frames and the validity of the equivalence principle: I. Cases in a neighbourhood and at a point. J. Phys. A: Math. Gen. 29, 6895–6901 (1996). arXiv:gr-qc/9608019

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. von der Heyde, P.: The equivalence principle in the U 4 theory of gravitation. Lett. Nuovo Cim. 14, 250–252 (1975)

    Article  Google Scholar 

  30. Gronwald, F., Hehl, F.W.: On the gauge aspects of gravity. arXiv:gr-qc/9602013

  31. Reifler, F., Morris, R.: Hestenes’ tetrad and spin connections. Int. J. Theor. Phys. 44, 1307–1324 (2005). arXiv:0706.1258 (gr-qc)

    Article  MATH  MathSciNet  Google Scholar 

  32. Arminjon, M.: Remarks on the mathematical origin of wave mechanics and consequences for a quantum mechanics in a gravitational field. In: Duffy, M.C. (ed.) Sixth Int. Conf. Physical Interpretations of Relativity Theory, Proceedings, pp. 1–17. British Soc. Philos. Sci. University of Sunderland, Sunderland (1998). arXiv:gr-qc/0203104

    Google Scholar 

  33. Khrennikov, A.: A pre-quantum classical statistical model with infinite-dimensional phase space. J. Phys. A: Math. Gen. 38, 9051–9073 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Arminjon, M.: On the relation Hamiltonian—wave equation, and on non-spreading solutions of Schrödinger’s equation. Nuovo Cim. B 114, 71–86 (1999)

    ADS  Google Scholar 

  35. Jacobson, T., Mattingly, D.: Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001). arXiv:gr-qc/0007031

    ADS  MathSciNet  Google Scholar 

  36. Arminjon, M.: Gravitational effects on light rays and binary pulsar energy loss in a scalar theory of gravity. Theor. Math. Phys. 140(1), 1011–1027 (2004). [Teor. Mat. Fiz. 140(1), 139–159 (2004)]. arXiv:gr-qc/0310062

    Article  MathSciNet  Google Scholar 

  37. Arminjon, M.: Space isotropy and weak equivalence principle in a scalar theory of gravity. Braz. J. Phys. 36, 177–189 (2006). arXiv:gr-qc/0412085

    Article  Google Scholar 

  38. Dieudonné, J.: Eléments d’Analyse, Tome III, 2nd edn. Gauthier-Villars/Bordas, Paris (1974). Sect. 17.13: Opérateurs différentiels

    Google Scholar 

  39. Whitham, G.B.: Linear and Non-linear Waves. Wiley, New York (1974). Sect. 11: Linear dispersive waves

    Google Scholar 

  40. Arminjon, M.: On the extension of Newton’s second law to theories of gravitation in curved space-time. Arch. Mech. 48, 551–576 (1996). arXiv:gr-qc/0609051

    MATH  MathSciNet  Google Scholar 

  41. Landau, L., Lifchitz, E.: Théorie des Champs, 4th edn. MIR, Moscow (1989). [Russian 7th edn.: Teoriya Polya, Izd. Nauka, Moskva]

    Google Scholar 

  42. Bertschinger, E.: Hamiltonian dynamics of particle motion. In: General Relativity, online course of the Massachusetts Institute of Technology by the same author (1999), http://web.mit.edu/edbert/GR/gr3.pdf

  43. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973). Exercise 25.2, p. 654

    Google Scholar 

  44. Arnold, V.: Méthodes Mathématiques de la Mécanique Classique, 1st edn. MIR, Moscow (1976). [2nd English edition: Mathematical Methods of Classical Mechanics, Springer, New York (1989)]

    MATH  Google Scholar 

  45. Arminjon, M., Reifler, F.: Basic quantum mechanics for three Dirac equations in a curved spacetime. arXiv:0807.0570v1 (gr-qc) (2008)

  46. Pais, A.: On spinors in n dimensions. J. Math. Phys. 3, 1135–1139 (1962). See also http://demonstrations.wolfram.com/DiracMatricesInHigherDimensions

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Fermi, E.: Rom. Acc. L. Rend. (5) 31 1, 21 and 51 (1922). Quoted by Cartan [48]

  48. Cartan, E.: Leçons sur la Géométrie des Espaces de Riemann, pp. 101–103. Gauthier-Villars, Paris (1951)

    MATH  Google Scholar 

  49. Audretsch, J.: Quantum mechanics of ‘free’ spin-1/2 particles in an expanding universe. Int. J. Theor. Phys. 9, 323–340 (1974)

    Article  MathSciNet  Google Scholar 

  50. Pauli, W.: Über die Formulierung der Naturgesetze mit fünf homogenen Koordinaten, Teil II: Die Diracschen Gleichungen für die Materiewellen. Ann. Phys. (5) 18, 337–354 (1933)

    Article  MATH  Google Scholar 

  51. Kofink, W.: Zur Mathematik der Diracmatrizen: die Bargmannsche Hermitisierungsmatrix A und die Paulische Transpositionsmatrix B. Math. Z. 51, 702–711 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  52. Doubrovine, B., Novikov, S., Fomenko, A.: Géométrie Contemporaine, Méthodes et Applications, Première Partie. MIR, Moscow (1982). [2nd English edition: Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry—Methods and Applications, Part I, Springer (1991)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayeul Arminjon.

Additional information

Part of this work was done while the author was at Dipartimento di Fisica, Università di Bari and INFN Bari, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arminjon, M. Dirac-Type Equations in a Gravitational Field, with Vector Wave Function. Found Phys 38, 1020–1045 (2008). https://doi.org/10.1007/s10701-008-9249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9249-6

Keywords

Navigation