Foundations of Physics

, Volume 38, Issue 11, pp 1020–1045 | Cite as

Dirac-Type Equations in a Gravitational Field, with Vector Wave Function

  • Mayeul Arminjon


An analysis of the classical-quantum correspondence shows that it needs to identify a preferred class of coordinate systems, which defines a torsionless connection. One such class is that of the locally-geodesic systems, corresponding to the Levi-Civita connection. Another class, thus another connection, emerges if a preferred reference frame is available. From the classical Hamiltonian that rules geodesic motion, the correspondence yields two distinct Klein-Gordon equations and two distinct Dirac-type equations in a general metric, depending on the connection used. Each of these two equations is generally-covariant, transforms the wave function as a four-vector, and differs from the Fock-Weyl gravitational Dirac equation (DFW equation). One obeys the equivalence principle in an often-accepted sense, whereas the DFW equation obeys that principle only in an extended sense.


Quantum mechanics in a gravitational field Classical-quantum correspondence Dirac and Klein-Gordon equations Preferred reference frame Tensor Dirac theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colella, R., Overhauser, A.W., Werner, S.A.: Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975) CrossRefADSGoogle Scholar
  2. 2.
    Werner, S.A., Staudenmann, J.A., Colella, R.: Effect of Earth’s rotation on the quantum mechanical phase of the neutron. Phys. Rev. Lett. 42, 1103–1107 (1979) CrossRefADSGoogle Scholar
  3. 3.
    Riehle, F., Kisters, Th., Witte, A., Helmcke, J., Bordé, Ch.J.: Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 67, 177–180 (1991) CrossRefADSGoogle Scholar
  4. 4.
    Kasevich, M., Chu, S.: Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991) CrossRefADSGoogle Scholar
  5. 5.
    Nesvizhevsky, V.V., et al.: Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297–299 (2002) CrossRefADSGoogle Scholar
  6. 6.
    Overhauser, A.W., Colella, R.: Experimental test of gravitationally induced quantum interference. Phys. Rev. Lett. 33, 1237–1240 (1974) CrossRefADSGoogle Scholar
  7. 7.
    Luschikov, V.I., Frank, A.I.: Quantum effects occuring when ultracold neutrons are stored on a plane. JETP Lett. 28, 559–561 (1978) ADSGoogle Scholar
  8. 8.
    Voronin, A.Yu., Abele, H., Baeßler, S., Nesvizhevsky, V.V., Petukhov, A.K., Protasov, K.V., Westphal, A.: Quantum motion of a neutron in a waveguide in the gravitational field. Phys. Rev. D 73, 044029 (2006) CrossRefADSGoogle Scholar
  9. 9.
    de Oliveira, C.G., Tiomno, J.: Representations of Dirac equation in general relativity. Nuovo Cim. 24, 672–687 (1962) MATHCrossRefGoogle Scholar
  10. 10.
    Mashhoon, B.: Neutron interferometry in a rotating frame of reference. Phys. Rev. Lett. 61, 2639–2642 (1988) CrossRefADSGoogle Scholar
  11. 11.
    Hehl, F.W., Ni, W.T.: Inertial effects of a Dirac particle. Phys. Rev. D 42, 2045–2048 (1990) CrossRefADSGoogle Scholar
  12. 12.
    Varjú, K., Ryder, L.H.: The effect of Schwarzschild field on spin 1/2 particles compared to the effect of a uniformly accelerating frame. Phys. Lett. A 250, 263–269 (1998) MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Obukhov, Yu.N.: Spin, gravity, and inertia. Phys. Rev. Lett. 86, 192–195 (2001). arXiv:gr-qc/0012102 CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Arminjon, M.: Post-Newtonian equation for the energy levels of a Dirac particle in a static metric. Phys. Rev. D 74, 065017 (2006). arXiv:gr-qc/0606036 ADSGoogle Scholar
  15. 15.
    Boulanger, N., Buisseret, F., Spindel, Ph.: On bound states of Dirac particles in gravitational fields. Phys. Rev. D 74, 125014 (2006). arXiv:hep-th/0610207 CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Arminjon, M.: Dirac equation from the Hamiltonian and the case with a gravitational field. Found. Phys. Lett. 19, 225–247 (2006). arXiv:gr-qc/0512046 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Schulten, K.: Relativistic quantum mechanics. In: Notes on Quantum Mechanics, online course of the University of Illinois at Urbana-Champaign by the same author (1999),
  18. 18.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw–Hill, New York (1964) Google Scholar
  19. 19.
    Arminjon, M., Reifler, F.: Dirac equation: Representation independence and tensor transformation. Braz. J. Phys. 38, 248–258 (2008). arXiv:0707.1829 (quant-ph) CrossRefGoogle Scholar
  20. 20.
    Pal, P.B.: Representation-independent manipulations with Dirac spinors. Preprint arXiv:physics/0703214 (2007)
  21. 21.
    Brill, D.R., Wheeler, J.A.: Interaction of neutrinos and gravitational field. Rev. Mod. Phys. 29, 465–479 (1957). Erratum: Rev. Mod. Phys. 33, 623–624 (1961) MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Aldrovandi, R., Pereira, J.G., Vu, K.H.: Gravity and the quantum: are they reconcilable? In: Quantum Theory: Reconsideration of Foundations-3. Växjö University, Sweden (2005). arXiv:gr-qc/0509051 Google Scholar
  23. 23.
    Will, C.M.: Theory and Experiment in Gravitational Physics, 2nd edn. Cambridge University Press, Cambridge (1993) MATHGoogle Scholar
  24. 24.
    Villalba, V.M., Greiner, V.M.: Creation of scalar and Dirac particles in the presence of a time varying electric field in an anisotropic Bianchi type I universe. Phys. Rev. D 65, 025007 (2001). arXiv:gr-qc/0112006 ADSGoogle Scholar
  25. 25.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982), Sect. 3.2 MATHGoogle Scholar
  26. 26.
    Weyl, H.: Elektron und Gravitation. Z. Phys. 56, 330–352 (1929). [English translation in L. O’Raifeartaigh: The Dawning of Gauge Theory, pp. 121–144. Princeton University Press (1997)] ADSGoogle Scholar
  27. 27.
    Hartley, D.: Normal frames for non-Riemannian connections. Class. Quantum Gravity 12, L103–L105 (1995). arXiv:gr-qc/9510013 CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Iliev, B.Z.: Normal frames and the validity of the equivalence principle: I. Cases in a neighbourhood and at a point. J. Phys. A: Math. Gen. 29, 6895–6901 (1996). arXiv:gr-qc/9608019 MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    von der Heyde, P.: The equivalence principle in the U 4 theory of gravitation. Lett. Nuovo Cim. 14, 250–252 (1975) CrossRefGoogle Scholar
  30. 30.
    Gronwald, F., Hehl, F.W.: On the gauge aspects of gravity. arXiv:gr-qc/9602013
  31. 31.
    Reifler, F., Morris, R.: Hestenes’ tetrad and spin connections. Int. J. Theor. Phys. 44, 1307–1324 (2005). arXiv:0706.1258 (gr-qc) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Arminjon, M.: Remarks on the mathematical origin of wave mechanics and consequences for a quantum mechanics in a gravitational field. In: Duffy, M.C. (ed.) Sixth Int. Conf. Physical Interpretations of Relativity Theory, Proceedings, pp. 1–17. British Soc. Philos. Sci. University of Sunderland, Sunderland (1998). arXiv:gr-qc/0203104 Google Scholar
  33. 33.
    Khrennikov, A.: A pre-quantum classical statistical model with infinite-dimensional phase space. J. Phys. A: Math. Gen. 38, 9051–9073 (2005) MATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Arminjon, M.: On the relation Hamiltonian—wave equation, and on non-spreading solutions of Schrödinger’s equation. Nuovo Cim. B 114, 71–86 (1999) ADSGoogle Scholar
  35. 35.
    Jacobson, T., Mattingly, D.: Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001). arXiv:gr-qc/0007031 ADSMathSciNetGoogle Scholar
  36. 36.
    Arminjon, M.: Gravitational effects on light rays and binary pulsar energy loss in a scalar theory of gravity. Theor. Math. Phys. 140(1), 1011–1027 (2004). [Teor. Mat. Fiz. 140(1), 139–159 (2004)]. arXiv:gr-qc/0310062 CrossRefMathSciNetGoogle Scholar
  37. 37.
    Arminjon, M.: Space isotropy and weak equivalence principle in a scalar theory of gravity. Braz. J. Phys. 36, 177–189 (2006). arXiv:gr-qc/0412085 CrossRefGoogle Scholar
  38. 38.
    Dieudonné, J.: Eléments d’Analyse, Tome III, 2nd edn. Gauthier-Villars/Bordas, Paris (1974). Sect. 17.13: Opérateurs différentiels Google Scholar
  39. 39.
    Whitham, G.B.: Linear and Non-linear Waves. Wiley, New York (1974). Sect. 11: Linear dispersive waves Google Scholar
  40. 40.
    Arminjon, M.: On the extension of Newton’s second law to theories of gravitation in curved space-time. Arch. Mech. 48, 551–576 (1996). arXiv:gr-qc/0609051 MATHMathSciNetGoogle Scholar
  41. 41.
    Landau, L., Lifchitz, E.: Théorie des Champs, 4th edn. MIR, Moscow (1989). [Russian 7th edn.: Teoriya Polya, Izd. Nauka, Moskva] Google Scholar
  42. 42.
    Bertschinger, E.: Hamiltonian dynamics of particle motion. In: General Relativity, online course of the Massachusetts Institute of Technology by the same author (1999),
  43. 43.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973). Exercise 25.2, p. 654 Google Scholar
  44. 44.
    Arnold, V.: Méthodes Mathématiques de la Mécanique Classique, 1st edn. MIR, Moscow (1976). [2nd English edition: Mathematical Methods of Classical Mechanics, Springer, New York (1989)] MATHGoogle Scholar
  45. 45.
    Arminjon, M., Reifler, F.: Basic quantum mechanics for three Dirac equations in a curved spacetime. arXiv:0807.0570v1 (gr-qc) (2008)
  46. 46.
    Pais, A.: On spinors in n dimensions. J. Math. Phys. 3, 1135–1139 (1962). See also MATHCrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Fermi, E.: Rom. Acc. L. Rend. (5) 31 1, 21 and 51 (1922). Quoted by Cartan [48] Google Scholar
  48. 48.
    Cartan, E.: Leçons sur la Géométrie des Espaces de Riemann, pp. 101–103. Gauthier-Villars, Paris (1951) MATHGoogle Scholar
  49. 49.
    Audretsch, J.: Quantum mechanics of ‘free’ spin-1/2 particles in an expanding universe. Int. J. Theor. Phys. 9, 323–340 (1974) CrossRefMathSciNetGoogle Scholar
  50. 50.
    Pauli, W.: Über die Formulierung der Naturgesetze mit fünf homogenen Koordinaten, Teil II: Die Diracschen Gleichungen für die Materiewellen. Ann. Phys. (5) 18, 337–354 (1933) MATHCrossRefGoogle Scholar
  51. 51.
    Kofink, W.: Zur Mathematik der Diracmatrizen: die Bargmannsche Hermitisierungsmatrix A und die Paulische Transpositionsmatrix B. Math. Z. 51, 702–711 (1949) MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Doubrovine, B., Novikov, S., Fomenko, A.: Géométrie Contemporaine, Méthodes et Applications, Première Partie. MIR, Moscow (1982). [2nd English edition: Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry—Methods and Applications, Part I, Springer (1991)] Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Laboratory “Soils, Solids, Structures—Risks”CNRS & University of GrenobleGrenobleFrance

Personalised recommendations