Foundations of Physics

, 38:758 | Cite as

Gauss Optics and Gauss Sum on an Optical Phenomena

  • Shigeki Matsutani


In the previous article (Found. Phys. Lett. 16:325–341, 2003), we showed that a reciprocity of the Gauss sums is connected with the wave and particle complementary. In this article, we revise the previous investigation by considering a relation between the Gauss optics and the Gauss sum based upon the recent studies of the Weil representation for a finite group.


Gauss reciprocity Wave-particle complementary SL(2,ℤ) Weil representation 


  1. 1.
    Berry, M.V., Bodenschatz, E.: Caustics, multiply reconstructed by Talbot interference. J. Mod. Opt. 46, 349–365 (1999) ADSGoogle Scholar
  2. 2.
    Bigourd, D., Chatel, B., Schleich, W.P., Girard, B.: Factorization of numbers with the temporal Talbot effect: Optical implementation by a sequence of shaped ultrashort pulses. arXiv:0709.1906
  3. 3.
    Berry, M.V., Klein, S.: Integer, fractional and fractal Talbot effects. J. Mod. Opt. 43, 2139–2164 (1996) MATHMathSciNetADSGoogle Scholar
  4. 4.
    Bluher, A.: The Weil representation and Gauss sums. Pac. J. Math. 173, 357–373 (1996) MATHMathSciNetGoogle Scholar
  5. 5.
    Born, M., Wolf, E.: Principle of Optics, 7th edn. Pergamon, Oxford (2001) Google Scholar
  6. 6.
    Cajori, F.: A History of Mathematics. Chelsea, New York (1991) MATHGoogle Scholar
  7. 7.
    Cliff, G., McNeilly, D., Szechtman, F.: Weil representations of symplectic groups over rings. J. Lond. Math. Soc. 62, 423–436 (2000) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebra. Wiley, New York (1962) Google Scholar
  9. 9.
    Curtis, C.W., Reiner, I.: Methods of Representation Theory, vol. I. Wiley, New York (1990) MATHGoogle Scholar
  10. 10.
    Deloup, F.: Linking forms, reciprocity for Gauss sums and invariants of 3-manifolds. Trans. Am. Math. Soc. 351, 1895–1918 (1999) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gauss, C.F.: Neue Beweise und Erweiterungen des Fundamentalsatzes in der Lehre von den quadratischen Resten. In: Arithmetische Untersuchungen, vol. 1818, pp. 496–510. Chelsea, New York (1965) Google Scholar
  12. 12.
    Gauss, C.F.: Dioptrische Untersuchungen. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, pp. 1–34 (1840) Google Scholar
  13. 13.
    Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge Univ. Press, Cambridge (1984) MATHGoogle Scholar
  14. 14.
    Hannay, J.H., Berry, M.V.: Quantization of linear maps of a torus-Fresnel diffraction by periodic grating. Physica 1D, 267–290 (1980) MathSciNetADSGoogle Scholar
  15. 15.
    Hecke, E.: Lectures on the Theory of Algebraic Numbers GTM, vol. 77. Springer, Berlin (1981) Google Scholar
  16. 16.
    Feng, S., Halterman, K., Overfelt, P.L.: Subwavelength fractional Talbot effect in layered heterostructures of composite metamaterials. Phys. Rev. E 74, 036612 (2006). arXiv:physics/0608003 ADSGoogle Scholar
  17. 17.
    Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Springer, Berlin (1990) MATHGoogle Scholar
  18. 18.
    Jeffrey, L.C.: Chern-Simons-Witten invariant of lens spaces and torus bundles and the semiclassical approximation. Commun. Math. Phys. 147, 563–604 (1992) MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    McKay, J.: Essentials of monstrous moonshine. Adv. Std. Pure. Math. 32, 347–353 (2001) MathSciNetGoogle Scholar
  20. 20.
    Kandidov, V.P., Kondrat’ev, A.V.: Talbot effect in Gaussian optical systems. Quantum Electron. 31, 1032–1034 (2001) CrossRefGoogle Scholar
  21. 21.
    Lion, G., Vergne, M.: The Weil Representation, Maslov Index and Theta Series. Birkhäuser, Basel (1980) MATHGoogle Scholar
  22. 22.
    Matsutani, S.: On density of state of quantize Willmore surface: A way to a quantized extrinsic string in ℝ. J. Phys. A 31, 3595–3606 (1998) MATHMathSciNetADSGoogle Scholar
  23. 23.
    Matsutani, S.: Generalized Weierstrass relations and frobenius reciprocity. Math. Phys. Anal. Geom. 9, 353–369 (2006) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Matsutani, S.: The relations in quantize elastica. J. Phys. A 41, 075201 (2008) MathSciNetADSGoogle Scholar
  25. 25.
    Matsutani, S., Ônishi, Y.: Wave-particle complementarity and reciprocity of Gauss sums on Talbot effects. Found. Phys. Lett. 16, 325–341 (2003) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Matsutani, S., Previato, E.: Jacobi inversion on strata of the Jacobian of the C rs curve y r=f(x). J. Math. Soc. Jpn. 60 (2008, to appear) Google Scholar
  27. 27.
    Manin, Y.I.: Mathematics as Metaphor. AMS, Rhode Island (2007) MATHGoogle Scholar
  28. 28.
    Oskolkov, K.I.: The valleys of shadow in Schroedinger landscape. The Erwin Schroedinger Intl. Inst. for Math. Phys. (preprint) (2005) Google Scholar
  29. 29.
    Rosu, H., Planat, M.: Cyclotomic quantum clock. In: Proc. ICSSUR-8, pp. 366–372. Rinton Press (2003). arXiv:quant-ph/0312073
  30. 30.
    Raszillier, H., Schempp, W.: Fourier optics from the perspective of the Heisenberg group. In: Sánchez, J.S., Wolf, K.B. (eds.) Lie Methods in Optics. LNP, vol. 250. Springer, Berlin (1985) Google Scholar
  31. 31.
    Rosu, H., Treviño, J.P., Cabrera, H., Murguía, J.S.: Talbot effect for dispersion in linear optical fibers and a wavelet approach. J. Mod. Phys. B 20, 1860–1875 (2006). arXiv:quant-ph/0510067 ADSGoogle Scholar
  32. 32.
    Polishchuk, A.: Abelian Varieties, Theta Functions and the Fourier Transform. Cambridge University Press, Cambridge (2003) MATHGoogle Scholar
  33. 33.
    Serre, J.-P.: Linear Representations of Finite Group. Springer, Berlin (1971) Google Scholar
  34. 34.
    Schulte, J.: Harmonic analysis on finite Heisenberg groups. Eur. J. Comb. 25, 327–338 (2004) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Schulman, L.S.: Techniques and Applications of Path Integration. Wiley, New York (1985) Google Scholar
  36. 36.
    Szechtman, F.: Quadratic Gauss sums over finite commutative rings. J. Number Theory 95, 1–13 (2002) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Talbot, W.H.F.: Facts relating to optical sciences. No. IV. Philos. Mag. 9, 401–407 (1836) Google Scholar
  38. 38.
    Talbot, W.H.F.: Correspondence of William Henry Fox Talbot at Glasgow University.
  39. 39.
    Turaev, V.: Reciprocity for Gauss sums on finite Abelian groups. Math. Proc. Camb. Phil. Soc. 124, 205–214 (1998) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Vladimirov, V.S., Volvixh, I.V., Zelenov, E.I.: P-adic Analysis and Mathematical Physics. World Scientific, Singapore (1994) Google Scholar
  41. 41.
    Weil, A.: Sur certains groupes d’operateurs unitaries. Acta Math. 11, 143–211 (1964) CrossRefMathSciNetGoogle Scholar
  42. 42.
    Weil, A.: Number Theory for Beginners. Springer, New York (1979) MATHGoogle Scholar
  43. 43.
    Winthrop, J.T., Worthington, C.R.: Theory of Fresnel images I, plane periodic objects in monochromatic light. J. Opt. Soc. Am. 55, 373–381 (1965) CrossRefADSGoogle Scholar
  44. 44.
    Whittaker, E.T., Watson, G.N.: A Course of Mordern Analysis. Cambridge University Press, Cambridge (1927) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.SagamiharaJapan

Personalised recommendations