Skip to main content
Log in

The Arrow of Time: From Universe Time-Asymmetry to Local Irreversible Processes

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In several previous papers we have argued for a global and non-entropic approach to the problem of the arrow of time, according to which the “arrow” is only a metaphorical way of expressing the geometrical time-asymmetry of the universe. We have also shown that, under definite conditions, this global time-asymmetry can be transferred to local contexts as an energy flow that points to the same temporal direction all over the spacetime. The aim of this paper is to complete the global and non-entropic program by showing that our approach is able to account for irreversible local phenomena, which have been traditionally considered as the physical origin of the arrow of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Castagnino, M., Lombardi, O., Lara, L.: The global arrow of time as a geometrical property of the universe. Found. Phys. 33, 877–912 (2003)

    Article  MathSciNet  Google Scholar 

  2. Castagnino, M., Lara, L., Lombardi, O.: The cosmological origin of time-asymmetry. Class. Quantum Gravity 20, 369–391 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Castagnino, M., Lara, L., Lombardi, O.: The direction of time: from the global arrow to the local arrow. Int. J. Theor. Phys. 42, 2487–2504 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Castagnino, M., Lombardi, O.: The generic nature of the global and non-entropic arrow of time and the double role of the energy-momentum tensor. J. Phys. A (Math. Gen.) 37, 4445–4463 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Castagnino, M., Lombardi, O.: A global and non-entropic approach to the problem of the arrow of time. In: Reimer, A. (ed.) Spacetime Physics Research Trends. Horizons in World Physics. Nova Science, New York (2005)

    Google Scholar 

  6. Castagnino, M., Lombardi, O.: The global non-entropic arrow of time: from global geometrical asymmetry to local energy flow. Synthese (in press)

  7. Albert, D.: Time and Chance. Harvard University Press, Cambridge (2001)

    Google Scholar 

  8. Earman, J.: What time reversal invariance is and why it matters. Int. Stud. Philos. Sci. 16, 245–264 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lax, P.D., Phillips, R.S.: Scattering Theory. Academic Press, New York (1979)

    Google Scholar 

  10. Tabor, M.: Chaos and Integrability in Nonlinear Dynamics. Wiley, New York (1989)

    MATH  Google Scholar 

  11. Penrose, R.: Singularities and time asymmetry. In: Hawking, S., Israel, W. (eds.) General Relativity, an Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  12. Sachs, R.G.: The Physics of Time-Reversal. University of Chicago Press, Chicago (1987)

    Google Scholar 

  13. Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, Oxford (1996)

    Google Scholar 

  14. Ehrenfest, P., Ehrenfest, T.: The Conceptual Foundations of the Statistical Approach in Mechanics. Cornell University Press, Ithaca (1959) (original 1912)

    MATH  Google Scholar 

  15. Brush, S.: The Kind of Motion We Call Heat. North Holland, Amsterdam (1976)

    Google Scholar 

  16. Boltzmann, L.: Ann. Phys. 60, 392–398 (1897)

    Google Scholar 

  17. Reichenbach, H.: The Direction of Time. University of California Press, Berkeley (1956)

    Google Scholar 

  18. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Vol. 1. Addison-Wesley, New York (1964)

    Google Scholar 

  19. Davies, P.C.: The Physics of Time Asymmetry. University of California Press, Berkeley (1974)

    Google Scholar 

  20. Davies, P.C.: Stirring up trouble. In: Halliwell, J.J., Perez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  21. Earman, J.: Philos. Sci. 41, 15–47 (1974)

    Article  Google Scholar 

  22. Hawking, S., Ellis, J.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  23. Schutz, B.F.: Geometrical Methods of Mathematical Physics. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  24. Grünbaum, A.: Philosophical Problems of Space and Time. Reidel, Dordrecht (1973)

    Google Scholar 

  25. Sklar, L.: Space, Time and Spacetime. University of California Press, Berkeley (1974)

    Google Scholar 

  26. Penrose, O., Percival, I.C.: The direction of time. Proc. Phys. Soc. 79, 605–616 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  27. Caldwell, R., Kamionkowski, M., Weinberg, N.: Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  28. Bohm, A., Gadella, M.: Dirac Kets, Gamow Vectors, and Gel’fand Triplets. Springer, Berlin (1989)

    Google Scholar 

  29. Bohm, A., Antoniou, I., Kielanowski, P.: The preparation/registration arrow of time in quantum mechanics. Phys. Lett. A 189, 442–448 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Bohm, A., Antoniou, I., Kielanowski, P.: A quantum mechanical arrow of time and the semigroup time evolution of Gamow vectors. J. Math. Phys. 36, 2593–2604 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  31. Bohm, A., Maxson, S., Loewe, M., Gadella, M.: Quantum mechanical irreversibility. Phys. A 236, 485–549 (1997)

    Article  Google Scholar 

  32. Bohm, A., Wickramasekara, S.: The time reversal operator for semigroup evolutions. Found. Phys. 27, 969–993 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  33. Castagnino, M., Gadella, M., Lombardi, O.: Time’s arrow and irreversibility in time-asymmetric quantum mechanics. Int. Stud. Philos. Sci. 19, 223–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Castagnino, M., Gadella, M., Lombardi, O.: Time-reversal. irreversibility and arrow of time in quantum mechanics, Found. Phys. 36, 407–426 (2006)

    MATH  MathSciNet  Google Scholar 

  35. Bogoliubov, N., Logunov, A.A., Todorov, I.T.: Axiomatic Quantum Field Theory. Benjamin-Cummings, Reading (1975)

    MATH  Google Scholar 

  36. Roman, P.: Introduction to Quantum Field Theory. Wiley, New York (1969)

    MATH  Google Scholar 

  37. Haag, R.: Local Quantum Physics. Fields, Particles, Algebras. Springer, Berlin (1996)

    MATH  Google Scholar 

  38. Weinberg, S.: The Quantum Theory of Fields. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  39. Visser, M.: Lorentzian Wormholes. Springer, Berlin (1996)

    Google Scholar 

  40. Paz, J.P., Zurek, W.H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.) Lecture Notes in Physics, vol. 587. Springer, Berlin (2002)

    Google Scholar 

  41. Birrell, N., Davies, P.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  42. Castagnino, M., Giacomini, H., Lara, L.: Dynamical properties of the conformally coupled flat FRW model. Phys. Rev. D 61, 107302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  43. Castagnino, M., Chavarriga, J., Lara, L., Grau, M.: Exact solutions for the fluctuations in a flat FRW universe coupled to a scalar field. Int. J. Theor. Phys. 41, 2027–2035 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. Huang, K.: Statistical Mechanics. Wiley, New York (1987)

    MATH  Google Scholar 

  45. Balliant, R.: From Microphysics to Macrophysics: Methods and Applications of Statistical Physics. Springer, Heidelberg (1992)

    Google Scholar 

  46. Levstein, P.R., Usaj, G., Pastawski, H.M.: Attenuation of polarization echoes in nuclear magnetic resonance: a study of the emergence of dynamical irreversibility in many-body quantum systems. J. Chem. Phys. 108, 2718–2724 (1998)

    Article  ADS  Google Scholar 

  47. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Aiello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aiello, M., Castagnino, M. & Lombardi, O. The Arrow of Time: From Universe Time-Asymmetry to Local Irreversible Processes. Found Phys 38, 257–292 (2008). https://doi.org/10.1007/s10701-007-9202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9202-0

Keywords

Navigation