Advertisement

Foundations of Physics

, Volume 38, Issue 3, pp 216–227 | Cite as

Physics of Dark Energy Particles

  • C. G. Böhmer
  • T. Harko
Article

Abstract

We consider the astrophysical and cosmological implications of the existence of a minimum density and mass due to the presence of the cosmological constant. If there is a minimum length in nature, then there is an absolute minimum mass corresponding to a hypothetical particle with radius of the order of the Planck length. On the other hand, quantum mechanical considerations suggest a different minimum mass. These particles associated with the dark energy can be interpreted as the “quanta” of the cosmological constant. We study the possibility that these particles can form stable stellar-type configurations through gravitational condensation, and their Jeans and Chandrasekhar masses are estimated. From the requirement of the energetic stability of the minimum density configuration on a macroscopic scale one obtains a mass of the order of 1055 g, of the same order of magnitude as the mass of the universe. This mass can also be interpreted as the Jeans mass of the dark energy fluid. Furthermore we present a representation of the cosmological constant and of the total mass of the universe in terms of ‘classical’ fundamental constants.

Keywords

Gravitation Dark energy Minimum mass Dark energy particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riess, A.G., et al.: Astron. J. 116, 109 (1998) CrossRefGoogle Scholar
  2. 2.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) CrossRefADSGoogle Scholar
  3. 3.
    de Bernardis, P., et al.: Nature 404, 995 (2000) CrossRefGoogle Scholar
  4. 4.
    Hanany, S., et al.: Astrophys. J. 545, L5 (2000) CrossRefADSGoogle Scholar
  5. 5.
    Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Padmanabhan, T.: Phys. Rep. 380, 235 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Mak, M.K., Dobson Jr., P.N., Harko, T.: Mod. Phys. Lett. A 15, 2153 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Böhmer, C.G.: Gen. Relativ. Gravit. 36, 1039 (2004) MATHCrossRefADSGoogle Scholar
  9. 9.
    Böhmer, C.G.: Ukr. J. Phys. 50, 1219 (2005) Google Scholar
  10. 10.
    Balaguera-Antolinez, A., Böhmer, C.G., Nowakowski, M.: Int. J. Mod. Phys. D 14, 1507 (2005) MATHCrossRefADSGoogle Scholar
  11. 11.
    Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959) MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Balaguera-Antolinez, A., Böhmer, C.G., Nowakowski, M.: Class. Quantum Gravity 23, 485 (2006) MATHCrossRefADSGoogle Scholar
  13. 13.
    Wesson, P.S.: Mod. Phys. Lett. A 19, 1995 (2004) CrossRefADSGoogle Scholar
  14. 14.
    Aldrovandi, R., Beltran Almeida, J.P., Pereira, J.G.: arXiv:gr-qc/0702065 (2007) Google Scholar
  15. 15.
    Aldrovandi, R., Beltran Almeida, J.P., Mayor, C.S.O., Pereira, J.G.: arXiv:0709.3947 (2007) Google Scholar
  16. 16.
    Aldrovandi, R., Beltran Almeida, J.P., Mayor, C.S.O., Pereira, J.G.: arXiv:0710.0610 (2007) Google Scholar
  17. 17.
    Aldrovandi, R., Beltran Almeida, J.P., Pereira, J.G.: Class. Quantum Gravity 24, 1385 (2007) MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Böhmer, C.G., Harko, T.: Phys. Lett. B 630, 73 (2005) ADSGoogle Scholar
  19. 19.
    Böhmer, C.G., Harko, T.: Class. Quantum Gravity 23, 6479 (2006) MATHCrossRefADSGoogle Scholar
  20. 20.
    Böhmer, C.G., Harko, T.: Gen. Relativ. Gravit. 39, 757 (2007) MATHCrossRefADSGoogle Scholar
  21. 21.
    Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989) CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982) Google Scholar
  23. 23.
    Batista, A.B., Fabris, J.C., Houndjo, S.: arXiv:0710.0999 (2007) Google Scholar
  24. 24.
    Wesson, P.S.: Found. Phys. Lett. 19, 285 (2006) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Trinczek, M., et al.: Phys. Rev. Lett. 90, 012501 (2003) CrossRefADSGoogle Scholar
  26. 26.
    Peccei, R.D., Sola, J., Wetterich, C.: Phys. Lett. B 195, 183 (1987) CrossRefADSGoogle Scholar
  27. 27.
    Wetterich, C.: Nucl. Phys. B 302, 668 (1988) CrossRefADSGoogle Scholar
  28. 28.
    Sola, J.: Phys. Lett. B 228, 317 (1989) CrossRefADSGoogle Scholar
  29. 29.
    Sola, J.: Int. J. Mod. Phys. A 5, 4225 (1990) CrossRefADSGoogle Scholar
  30. 30.
    Shapiro, I.L., Sola, J.: Phys. Lett. B 475, 236 (2000) CrossRefADSGoogle Scholar
  31. 31.
    Dirac, P.A.M.: Proc. R. Soc. A 333, 439 (1974) CrossRefADSGoogle Scholar
  32. 32.
    Mazur, P.O., Mottola, E.: Proc. Natl. Acad. Sci. 101, 9545 (2004) CrossRefADSGoogle Scholar
  33. 33.
    Chapline, G.: arXiv:astro-ph/0503200 (2005) Google Scholar
  34. 34.
    Lobo, F.S.N.: Class. Quantum Gravity 23, 1525 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Böhmer, C.G., Harko, T.: J. Cosmol. Astropart. Phys. 06, 025 (2007) CrossRefADSGoogle Scholar
  36. 36.
    Fukuyama, T., Morikawa, M., Tatekawa, T.: arXiv:0705.3091 (2007) Google Scholar
  37. 37.
    Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and Neutron Stars. Wiley, New York (1983) Google Scholar
  38. 38.
    Katz, J., Lynden-Bell, D., Israel, W.: Class. Quantum Gravity 5, 971 (1988) MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity College LondonLondonUK
  2. 2.Department of Physics and Center for Theoretical and Computational PhysicsThe University of Hong KongHong KongHong Kong

Personalised recommendations