Skip to main content
Log in

Interior of a Schwarzschild Black Hole Revisited

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Schwarzschild solution has played a fundamental conceptual role in general relativity, and beyond, for instance, regarding event horizons, spacetime singularities and aspects of quantum field theory in curved spacetimes. However, one still encounters the existence of misconceptions and a certain ambiguity inherent in the Schwarzschild solution in the literature. By taking into account the point of view of an observer in the interior of the event horizon, one verifies that new conceptual difficulties arise. In this work, besides providing a very brief pedagogical review, we further analyze the interior Schwarzschild black hole solution. Firstly, by deducing the interior metric by considering time-dependent metric coefficients, the interior region is analyzed without the prejudices inherited from the exterior geometry. We also pay close attention to several respective cosmological interpretations, and briefly address some of the difficulties associated to spacetime singularities. Secondly, we deduce the conserved quantities of null and timelike geodesics, and discuss several particular cases in some detail. Thirdly, we examine the Eddington–Finkelstein and Kruskal coordinates directly from the interior solution. In concluding, it is important to emphasize that the interior structure of realistic black holes has not been satisfactorily determined, and is still open to considerable debate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Oppenheimer, J.R., Snyder, H.: On continued gravitational contraction. Phys. Rev. 56, 455 (1939)

    Article  MATH  ADS  Google Scholar 

  2. Schwarzschild, K.: Uber das Gravitationsfeld einer Kugel aus inkompressibler Flussigkeit nach der Einsteinschen Theorie, Sitz.ber. Dtsch. Akad. Wiss. Berl. Kl. Math. Phys. Tech. 424–434 (1916)

  3. Tolman, R.C.: Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364 (1939)

    Article  MATH  ADS  Google Scholar 

  4. Oppenheimer, J.R., Volkoff, G.: On massive neutron cores. Phys. Rev. 55, 374 (1939)

    Article  MATH  ADS  Google Scholar 

  5. Thorne, K.S., Price, R.H., Macdonald, D.A. (eds.): Black Holes: The Membrane Paradigm. Yale University Press, New Haven (1986)

    Google Scholar 

  6. Zel’dovich, Y.B., Novikov, I.D.: Relativistic Astrophysics. University of Chicago Press, Chicago (1971)

    Google Scholar 

  7. Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Soc. Ital. Fis. 1, 252 (1969)

    Google Scholar 

  8. Narlikar, J.V., Padmanabhan, T.: The Schwarzschild solution: some conceptual difficulties. Found. Phys. 18, 659–668 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  9. Sabbata, V., Pavsic, M., Recami, E.: Black holes and tachyons. Lett. Nuovo Cimento 19, 441–451 (1977)

    Article  ADS  Google Scholar 

  10. Goldoni, R.: Black and white holes. Gen. Relativ. Gravit. 1, 103–113 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  11. Janis, A.I.: Note on motion in the Schwarschild field. Phys. Rev. D 8, 2360 (1973)

    Article  ADS  Google Scholar 

  12. Janis, A.I.: Motion in the Schwarschild field: A reply. Phys. Rev. D 15, 3068 (1977)

    Article  ADS  Google Scholar 

  13. Crawford, P., Tereno, I.: Generalized observers and velocity measurements in general relativity. Gen. Relativ. Gravit. 34, 2075 (2002). arXiv:gr-qc/0111073

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Bolos, V.J.: Lightlike simultaneity, comoving observers and distances in general relativity. J. Geom. Phys. 56, 813–829 (2006). arXiv:gr-qc/0501085

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Bolos, V.J.: Intrinsic definitions of ‘relative velocity’ in general relativity. arXiv:gr-qc/0506032 (2005)

  16. Earman, J.: Tolerance for spacetime singularities. Found. Phys. 26, 623–640 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. Misner, C.: Absolute zero of time. Phys. Rev. 186, 1328 (1969)

    Article  MATH  ADS  Google Scholar 

  18. Mazur, P.O., Mottola, E.: Gravitational condensate stars: an alternative to black holes. arXiv:gr-qc/0109035 (2001)

  19. Mazur, P.O., Mottola, E.: Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. U.S.A. 111, 9545 (2004). arXiv:gr-qc/0407075

    Article  ADS  Google Scholar 

  20. Chapline, G., Hohlfeld, E., Laughlin, R.B., Santiago, D.I.: Quantum phase transitions and the breakdown of classical general relativity. Int. J. Mod. Phys. A 18, 3587–3590 (2003). arXiv:gr-qc/0012094

    Article  ADS  Google Scholar 

  21. Visser, M., Wiltshire, D.L.: Stable gravastars—an alternative to black holes? Class. Quantum Gravity 21, 1135 (2004). arXiv:gr-qc/0310107

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Cattoen, C., Faber, T., Visser, M.: Gravastars must have anisotropic pressures. Class. Quantum Gravity 22, 4189–4202 (2005). arXiv:gr-qc/0505137

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Bilić, N., Tupper, G.B., Viollier, R.D.: Born–Infeld phantom gravastars. JCAP 02(2006)(013) (2006). arXiv:astro-ph/0503427

  24. Dymnikova, I.: Vacuum nonsingular black hole. Gen. Relativ. Gravit. 24, 235 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  25. Dymnikova, I.: Spherically symmetric space-time with the regular de Sitter center. Int. J. Mod. Phys. D 12, 1015–1034 (2003). arXiv:gr-qc/0304110

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Dymnikova, I., Galaktionov, E.: Stability of a vacuum nonsingular black hole. Class. Quantum Gravity 22, 2331–2358 (2005). arXiv:gr-qc/0409049

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Chapline, G.: Dark energy stars. arXiv:astro-ph/0503200

  28. Lobo, F.S.N.: Stable dark energy stars. Class. Quantum Gravity 23, 1525 (2006). arXiv:astro-ph/0508115

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Abramowicz, M.A., Kluzniak, W., Lasota, J.P.: No observational proof of the black-hole event-horizon. Astron. Astrophys. 396, L31 (2002). arXiv:astro-ph/0207270

    Article  MATH  ADS  Google Scholar 

  30. Kantowski, R., Sachs, R.K.: Some spatially homogeneous anisotropic relativistic cosmological models. J. Math. Phys. 7, 443–445 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  31. Collins, C.B.: Global structure of the ‘Kantowski–Sachs’ cosmological models. J. Math. Phys. 18, 2116–2124 (1977)

    Article  ADS  Google Scholar 

  32. Vollick, D.N.: Anisotropic Born–Infeld cosmologies. Gen. Relativ. Gravit. 35, 1511 (2003). arXiv:hep-th/0102187

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Vollick, D.N.: Black hole and cosmological space-times in Born–Infeld–Einstein theory. arXiv:gr-qc/0601136 (2006)

  34. Doran, R., Lobo, F.S.N., Crawford, P.: Cosmological applications of the interior Schwarzschild solution (in preparation)

  35. Easson, D.A., Brandenberger, R.H.: Universe generation from black hole interiors. J. High Energy Phys. 0106, 024 (2001). arXiv:hep-th/0103019

    Article  ADS  MathSciNet  Google Scholar 

  36. Brehme, R.W.: Inside the black hole. Am. J. Phys. 45, 423 (1977)

    Article  ADS  Google Scholar 

  37. Karlhede, A., Lindström, U., Aman, J.E.: A note on a local effect at the Schwarzschild sphere. Gen. Relativ. Gravit. 14, 569 (1982)

    Article  ADS  Google Scholar 

  38. Landau, L., Lifschitz, E.: The Classical Theory of Fields, 4th edn. Pergamon, New York (1975)

    Google Scholar 

  39. Kiselev, V.V.: Radial geodesics as a microscopic origin of black hole entropy. I. Confined under the Schwarzschild horizon. Phys. Rev. D 72, 124011 (2005). arXiv:gr-qc/0412090

    Article  ADS  MathSciNet  Google Scholar 

  40. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco S. N. Lobo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doran, R., Lobo, F.S.N. & Crawford, P. Interior of a Schwarzschild Black Hole Revisited. Found Phys 38, 160–187 (2008). https://doi.org/10.1007/s10701-007-9197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9197-6

Keywords

Navigation