Skip to main content
Log in

Different Routes to Lorentz Symmetry Violations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recent observations of ultra high energy cosmic rays and gamma rays suggest that there are small violations of Lorentz symmetry. If there were no such violations, then the GZK cut off would hold and cosmic rays with energy ∼1020 eV or higher would not be reaching the earth. However some such events seem to have been observed. This has lead to phenomenological models in which there is a small violation of the Lorentz symmetry or the velocity of light. However recent approaches which no longer consider a differentiable spacetime manifold already predict such violations. Similarly there are other theoretical reasons which also point to this. We briefly discuss some of these approaches and observe that Lorentz Symmetry violations can be tested by data from NASA’s GLAST satellite due for launch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavlopoulos, T.G.: Phys. Lett. B 625, 13–18 (2005)

    Article  ADS  Google Scholar 

  2. Sidharth, B.G.: The Universe of Fluctuations. Springer, Netherlands (2005)

    MATH  Google Scholar 

  3. Sidharth, B.G.: Int. J. Theor. Phys. 43(9), 1 (2004)

    Article  Google Scholar 

  4. Magueijo, J.: Rep. Prog. Phys. 66, 2025–2068 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. Jacobson, T., Liberati, S., Mattingly, D.: hep-ph/0407370

  6. Jacobson, T., Liberati, S., Mattingly, D.: Ann. Phys. 321, 150–196 (2006)

    Article  MATH  ADS  Google Scholar 

  7. Amelino-Camelia, G., et al.: AIP Conf. Proc. 758, 30–80 (2005). gr-qc/0501053

    Article  ADS  Google Scholar 

  8. Gonzales Mestres, L.: physics/9704017

  9. Coleman, S., Glashow, S.L.: Phys. Rev. D 59, 116008 (1999)

    Article  ADS  Google Scholar 

  10. Jacobson, T., et al.: astro-ph/0212190

  11. Olinto, A.V.: Phys. Rep. 333–334, 329 (2000)

    Article  Google Scholar 

  12. Carroll, S.M., et al.: Phys. Rev. Lett. 87, 141601 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Nagano, M., et al.: Rev. Mod. Phys. 72, 689 (2000)

    Article  ADS  Google Scholar 

  14. Sidharth, B.G.: Chaos Solitons Fractals 15, 593–595 (2003)

    Article  Google Scholar 

  15. Montvay, I., Munster, G.: In: Quantum Fields on a Lattice, p. 174. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  16. Sidharth, B.G.: An ultra high energy Dirac equation. Int. J. Mod. Phys. E 14(6), 927 (2005)

    Article  ADS  Google Scholar 

  17. Kifune, T.: Astrophys. J. Lett. 518, L21 (1999). astro-ph/9904164

    Article  ADS  Google Scholar 

  18. Protheroe, R.J., Meyer, H.: Phys. Lett. B 493, 1 (2000)

    Article  ADS  Google Scholar 

  19. Aloisio, R., Blasi, P., Ghia, P.L., Grillo, A.F.: Phys. Rev. D 62, 053010 (2000)

    Article  ADS  Google Scholar 

  20. Kluzniak, W.: astro-ph/9905308

  21. Sato, H.: astro-ph/0005218

  22. Amelino-Camelia, G., Piran, T.: Phys. Lett. B 497, 265–270 (2001)

    Article  MATH  ADS  Google Scholar 

  23. Amelino-Camelia, G.: gr-qc/0012051v2 (he proposes a conceptual framework in which deformed dispersion relations coexist with a relativistic description of the short distance structure of spacetime)

  24. Amelino-Camelia, G., Piran, T.: Phys. Rev. D 64, 036005 (2001)

    Article  ADS  Google Scholar 

  25. Amelino-Camelia, G., John Ellis, N.E., Mavromatos, D.V., Nanopoulos, Subir, S.: Nature 393, 763–765 (1998). astro-ph/9712103

    Article  ADS  Google Scholar 

  26. Amelino-Camelia, G.: Nature 418, 34–35 (2002)

    Article  ADS  Google Scholar 

  27. http://glast.gsfc.nasa.gov/

  28. Sidharth, B.G.: Black hole thermodynamics and electromagnetism. Found. Phys. Lett. 19(1), 87–94 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sidharth, B.G.: A note on massive photons. Found. Phys. Lett. 19(4), 399–402 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Goldhaber, A.S., Nieto, M.M.: Rev. Mod. Phys. 43(3), 277–296 (1971)

    Article  ADS  Google Scholar 

  31. Landsberg, P.T.: Am. J. Phys. 51, 274–275 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  32. Sidharth, B.G.: Found. Phys. Lett. 17(5), 503–506 (2004)

    Article  MATH  Google Scholar 

  33. Evans, M., Vigier, J.P.: In: The Enigmatic Photon, p. 136. Kluwer Academic, Dordrecht (1995)

    Google Scholar 

  34. Bartlett, D.F., Corle, T.R.: Phys. Rev. Lett. 55, 59 (1985)

    Article  ADS  Google Scholar 

  35. Vigier, J.P.: IEEE Trans. Plasma Sci. 18(1), 64–72 (1990)

    Article  ADS  Google Scholar 

  36. Itzykson, C., Zuber, J.: In: Quantum Field Theory, pp. 134–138. McGraw Hill, New York (1980)

    Google Scholar 

  37. Mott, N.F., Massey, H.S.W.: In: The Theory of Atomic Collisions, pp. 53–68. Oxford University Press, Oxford (1965)

    Google Scholar 

  38. Joachain, C.J.: In: Quantum Collision Theory, pp. 133–146. North-Holland, Amsterdam (1975)

    Google Scholar 

  39. Sidharth, B.G., Abdel-Hafez, A.: Acta Phys. Pol. A 56, 577 (1979)

    MathSciNet  Google Scholar 

  40. Sidharth, B.G., Abdel-Hafez, A.: Acta Phys. Pol. A 57, 287 (1980)

    MathSciNet  Google Scholar 

  41. Sidharth, B.G.: J. Math. Phys. 24, 878 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Deser, S.: Ann Inst. Henri Poincare XVI, 79 (1972)

    MathSciNet  Google Scholar 

  43. Terazawa, H.: Phys. Lett. B 101, 43 (1981)

    Article  ADS  Google Scholar 

  44. Goenner, H.F., Bogoslovsky, Y.G.: Gen. Relativ. Gravit. 31(9), 1383–1394 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Bogoslovsky, Y.G., Goenner, H.F.: Gen. Relativ. Gravit. 31(10), 1565–1603 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. Bogoslovsky, Y.G., Goenner, H.F.: Phys. Lett. A 244, 222–228 (1998)

    Article  ADS  Google Scholar 

  47. Colladay, D.: Int. J. Mod. Phys. A 20(6), 1260–1267 (2005)

    Article  ADS  Google Scholar 

  48. Sidharth, B.G.: Electromagn. Phenom. 6(1), 63 (2006)

    MathSciNet  Google Scholar 

  49. Cardone, F., Mignani, R., Scrimaglio, R.: Found. Phys. 36(2), 263–290 (2006)

    Article  Google Scholar 

  50. Cardone, F., Mignani, R.: Deformed Spacetime: Geometrizing Interactions in Four and Five Dimensions. Fundamental Theories of Physics, vol. 157. Springer, Berlin (2007)

    MATH  Google Scholar 

  51. Cardone, F., Mignani, R.: Energy and Geometry: An Introduction to Deformed Special Relativity. Series in Contemporary Chemical Physics, vol. 22. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  52. Lakes, R.: Phys. Rev. Lett. 80(9), 1826–1829 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Sidharth.

Additional information

Permanent address: International Institute for Applicable Mathematics & Information Sciences, Hyderabad, India & Udine, Italy. B.M. Birla Science Centre, Adarsh Nagar, Hyderabad 500 063, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidharth, B.G. Different Routes to Lorentz Symmetry Violations. Found Phys 38, 89–95 (2008). https://doi.org/10.1007/s10701-007-9193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9193-x

Keywords

Navigation