Skip to main content
Log in

An Assessment of Evans’ Unified Field Theory I

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Evans developed a classical unified field theory of gravitation and electromagnetism on the background of a spacetime obeying a Riemann-Cartan geometry. This geometry can be characterized by an orthonormal coframe ϑ α and a (metric compatible) Lorentz connection Γ αβ. These two potentials yield the field strengths torsion T α and curvature R αβ. Evans tried to infuse electromagnetic properties into this geometrical framework by putting the coframe ϑ α to be proportional to four extended electromagnetic potentials \(\mathcal{A}^{\alpha }\) ; these are assumed to encompass the conventional Maxwellian potential A in a suitable limit. The viable Einstein-Cartan (-Sciama-Kibble) theory of gravity was adopted by Evans to describe the gravitational sector of his theory. Including also the results of an accompanying paper by Obukhov and the author, we show that Evans’ ansatz for electromagnetism is untenable beyond repair both from a geometrical as well as from a physical point of view. As a consequence, his unified theory is obsolete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bishop, R.L., Crittenden, R.J.: Geometry of Manifolds. Academic Press, New York (1964)

    MATH  Google Scholar 

  2. Blagojević, M.: Gravitation and Gauge Symmetries. Institute of Physics, Bristol (2002)

    MATH  Google Scholar 

  3. Bruhn, G.W.: No energy to be extracted from the vacuum. Phys. Scr. 74, 535–536 (2006)

    Article  MATH  ADS  Google Scholar 

  4. Bruhn, G.W.: No Lorentz property of M.W. Evans’ O(3)-symmetry law. Phys. Scr. 74, 537–538 (2006)

    Article  MATH  ADS  Google Scholar 

  5. Bruhn, G.W.: On the non-Lorentz invariance of M.W. Evans’ O(3)-symmetry law. arXiv.org/ physics/0607186

  6. Bruhn, G.W.: The central error of M.W. Evans’ ECE theory—a type mismatch. arXiv.org/ physics/0607190

  7. Bruhn, G.W.: Refutation of Myron W. Evans B (3) field hypothesis. http://www.mathematik.tu-darmstadt.de/~bruhn/B3-refutation.htm

  8. Bruhn, G.W.: Comments on M.W. Evans’ preprint chapter 2: duality and the antisymmetric metric, pp. 21–30. http://www.mathematik.tu-darmstadt.de/~bruhn/Comment-Chap2.htm

  9. Bruhn, G.W.: Remarks on Evans’ 2nd Bianchi identity. http://www.mathematik.tu-darmstadt.de/~bruhn/EvansBianchi.html

  10. Bruhn, G.W.: Comments on Evans’ duality. http://www.mathematik.tu-darmstadt.de/~bruhn/EvansDuality.html

  11. Bruhn, G.W.: ECE Theory and Cartan geometry. http://www.mathematik.tu-darmstadt.de/~bruhn/ECE-CartanGeometry.html

  12. Bruhn, G.W., Lakhtakia, A.: Commentary on Myron W. Evans’ paper “The electromagnetic sector ...”. http://www.mathematik.tu-darmstadt.de/~bruhn/EvansChap13.html

  13. Cartan, É.: Sur une généralisation de la notion de corbure de Riemann et les espaces à torsion. C. R. Acad. Sci. (Paris) 174, 593–595 (1922)

    Google Scholar 

  14. Cartan, É.: On a generalization of the notion of Riemann curvature and spaces with torsion. In: Bergmann, P.G., De Sabbata, V. (eds.), Cosmology and Gravitation, pp. 489–491. Plenum, New York (1980) (Translation of [13] from the French by G.D. Kerlick). See also the remarks of A. Trautman, ibid. pp. 493–496

    Google Scholar 

  15. Cartan, É.: On Manifolds with an Affine Connection and the Theory of General Relativity. Bibliopolis, Napoli (1986) (English translation of the French original)

    MATH  Google Scholar 

  16. Cartan, E.: Riemannian Geometry in an Orthogonal Frame. World Scientific, Hackensack (2001), Sect. 87 (Translation from Russian by V.V. Goldberg)

    Google Scholar 

  17. Corson, E.M.: Introduction to Tensors, Spinors, and Relativistic Wave-Equations. Blackie, London (1953)

    MATH  Google Scholar 

  18. Debever, R. (ed.): Elie Cartan—Albert Einstein, Lettres sur le Parallélisme Absolu 1929–1932, original letters with translations in English. Palais des Académies/Princeton University Press, Bruxelles/Princeton (1979)

  19. de Carvalho, A.L.T., Rodrigues, W.A. Jr.: The non sequitur mathematics and physics of the ‘new electrodynamics’ of the AIAS group. Random Oper. Stoch. Equ. 9, 161–206 (2001). arXiv.org/physics/0302016

    Article  MATH  Google Scholar 

  20. Eckardt, H.: Slides from the first workshop on ECE theory. http://aias.us → publications → Results of first workshop

  21. Evans, M.W.: Solutions of the ECE field equations, paper 50 of Evans’ theory. http://www.aias.us/documents/uft/a50thpaper.pdf

  22. Evans, M.W.: Wave mechanics and ECE theory, paper 54 of Evans’ theory. http://www.aias.us/documents/uft/a54thpaper.pdf

  23. Evans, M.W.: Generally covariant dynamics, paper 55 of Evans’ theory. http://www.aias.us/documents/uft/a55thpaper.pdf

  24. Evans, M.W.: A generally covariant field equation for gravitation and electromagnetism. Found. Phys. Lett. 16, 369–377 (2003)

    Article  MathSciNet  Google Scholar 

  25. Evans, M.W.: The spinning and curving of spacetime: the electromagnetic and gravitational fields in the Evans field theory. Found. Phys. Lett. 18, 431–454 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Evans, M.W.: Generally Covariant Unified Field Theory, the Geometrization of Physics, vol. I. Arima, Suffolk (2005)

    Google Scholar 

  27. Evans, M.W.: Generally Covariant Unified Field Theory, the Geometrization of Physics, vol. II. Abramis Academic, publisher@abramin.co.uk (2006)

  28. Evans, M.W.: Generally Covariant Unified Field Theory, the Geometrization of Physics, vol. III. Amazon.com (2006)

  29. Evans, M.W., Eckardt, H.: The resonant Coulomb law of Einstein Cartan Evans theory, paper 63 of Evans’ theory. http://aias.us/documents/uft/a63rdpaper.pdf

  30. Eyraud, H.: La théorie affine asymétrique du champs électromagnétique et gravifique et le rayonnement atomique. C. R. Acad. Sci. (Paris) 180, 1245–1248 (1925)

    MATH  Google Scholar 

  31. Garcia, A.A., Hehl, F.W., Heinicke, C., Macias, A.: Exact vacuum solution of a (1+2)-dimensional Poincaré gauge theory: BTZ solution with torsion. Phys. Rev. D 67, 124016 (2003). arXiv:gr-qc/0302097

    Article  ADS  MathSciNet  Google Scholar 

  32. Goenner, H.F.M.: On the history of unified field theories. Living Rev. Relat. 7 (2004). http://www.livingreviews.org/lrr-2004-2H.Goenner (cited on 01 Dec 2006)

  33. Gronwald, F.: Metric-affine gauge theory of gravity, I: fundamental structure and field equations. Int. J. Mod. Phys. D 6, 263–304 (1997). arXiv.org/gr-qc/9702034

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Gronwald, F., Hehl, F.W.: On the gauge aspects of gravity. In: Bergmann, P.G. et al. (eds.) Proceeding of the International School of Cosmology and Gravitation. 14th Course: Quantum Gravity, Erice, Italy, pp. 148–198. World Scientific, Singapore (1996). arXiv.org/gr-qc/9602013

    Google Scholar 

  35. Hehl, F.W.: On the kinematics of the torsion of space–time. Found. Phys. 15, 451–471 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  36. Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976)

    Article  ADS  Google Scholar 

  37. Hehl, F.W., McCrea, J.D.: Bianchi identities and the automatic conservation of energy–momentum and angular momentum in general-relativistic field theories. Found. Phys. 16, 267–293 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  38. Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1–171 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  39. Hehl, F.W., Obukhov, Yu.N.: Foundations of Classical Electrodynamics: Charge, Flux, and Metric. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  40. Hehl, F.W., Obukhov, Y.N.: Electric/magnetic reciprocity in premetric electrodynamics with and without magnetic charge, and the complex electromagnetic field. Phys. Lett. A 323, 169–175 (2004). arXiv.org/physics/0401083

    Article  MATH  ADS  Google Scholar 

  41. Hehl, F.W., Obukhov, Yu.N.: Dimensions and units in electrodynamics. Gen. Relativ. Gravit. 37, 733–749 (2005). arXiv.org/physics/0407022

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Hehl, F.W., Obukhov, Yu.N.: An assessment of Evans’ unified field theory II. Found. Phys. (2007). doi:10.1007/s10701-007-0188-70. arXiv.org/physics/0703117

    Google Scholar 

  43. Heinicke, C.: Exact solutions in Einstein’s theory and beyond. PhD thesis, University of Cologne (2005)

  44. Heinicke, C., Baekler, P., Hehl, F.W.: Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity. Phys. Rev. D 72, 025012 (2005). arXiv.org/gr-qc/0504005

    Article  ADS  MathSciNet  Google Scholar 

  45. Horie, K.: Geometric interpretation of electromagnetism in a gravitational theory with torsion and spinorial matter, PhD thesis, University of Mainz (1995). arXiv.org/hep-th/9601066

  46. Infeld, L.: Zur Feldtheorie von Elektrizität und Gravitation. Phys. Z. 29, 145–147 (1928)

    Google Scholar 

  47. Itin, Y., Kaniel, S.: On a class of invariant coframe operators with application to gravity. J. Math. Phys. 41, 6318–6340 (2000). arXiv.org/gr-qc/9907023

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Itin, Y.: Energy-momentum current for coframe gravity. Class. Quantum Gravity 19, 173–189 (2002). arXiv.org/gr-qc/0111036

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Jadczyk, A.: Vanishing vierbein in gauge theories of gravitation. arXiv.org/gr-qc/9909060

  50. Kaiser, G.: Energy-momentum conservation in pre-metric electrodynamics with magnetic charges. J. Phys. A 37, 7163–7168 (2004). arXiv.org/math-ph/0401028

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212–221 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Kuhfuss, R., Nitsch, J.: Propagating modes in gauge field theories of gravity. Gen. Relativ. Gravit. 18, 1207–1227 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  53. Lakhtakia, A.: Is Evans’ longitudinal ghost field B (3) unknowable? Found. Phys. Lett. 8, 183–186 (1995)

    Article  Google Scholar 

  54. Lämmerzahl, C., Macias, A., Mueller, H.: Lorentz invariance violation and charge (non-)conservation: a general theoretical frame for extensions of the Maxwell equations. Phys. Rev. D 71, 025007 (2005). arXiv.org/gr-qc/0501048

    Article  ADS  Google Scholar 

  55. McCrea, J.D., Hehl, F.W., Mielke, E.W.: Mapping Noether identities into Bianchi identities in general relativistic field theories of gravity and in the field theory of static lattice defects. Int. J. Theor. Phys. 29, 1185–1206 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  56. Obukhov, Y.N.: Poincaré gauge gravity: selected topics. Int. J. Geom. Methods Mod. Phys. 3, 95–138 (2006). arXiv.org/gr-qc/0601090

    Article  MathSciNet  Google Scholar 

  57. Obukhov, Y.N., Rubilar, G.F.: Invariant conserved currents in gravity theories with local Lorentz and diffeomorphism symmetry. Phys. Rev. D 74, 064002 (2006). arXiv.org/gr-qc/0608064

    Article  ADS  MathSciNet  Google Scholar 

  58. Particle Data Group: Review of particle physics. J. Phys. G 33, 1–1231 (2006)

    Article  Google Scholar 

  59. Pilch, K.: Geometrical meaning of the Poincaré group gauge theory. Lett. Math. Phys. 4, 49–51 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  60. Post, E.J.: Formal Structure of Electromagnetics—General Covariance and Electromagnetics. North-Holland/Dover, Amsterdam/Mineola (1962/1997)

    MATH  Google Scholar 

  61. Rodrigues, W.A. Jr., Gomes de Souza, Q.A.: An ambiguous statement called ‘tetrad postulate’ and the correct field equations satisfied by the tetrad fields. Int. J. Mod. Phys. D 14, 2095–2150 (2005). arXiv.org/math-ph/0411085

    Article  MATH  ADS  Google Scholar 

  62. Ruggiero, M.L., Tartaglia, A.: Einstein–Cartan theory as a theory of defects in space–time. Am. J. Phys. 71, 1303–1313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  63. Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  64. Schouten, J.A.: Ricci Calculus, 2nd edn. Springer, Berlin (1954)

    MATH  Google Scholar 

  65. Schouten, J.A.: Tensor Analysis for Physicists, 2nd edn. reprinted. Dover, New York (1989)

    Google Scholar 

  66. Sciama, D.W.: On the analogy between charge and spin in general relativity. In: Recent Developments of General Relativity, pp. 415–439. Pergamon, London (1962)

    Google Scholar 

  67. Sciama, D.W.: The physical structure of general relativity. Rev. Mod. Phys. 36, 463–469 (1964); 1103(E)

    Article  ADS  Google Scholar 

  68. Sezgin, E., van Nieuwenhuizen, P.: New ghost free gravity Lagrangians with propagating torsion. Phys. Rev. D 21, 3269–3280 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  69. Sharpe, R.W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Springer, New York (1997)

    MATH  Google Scholar 

  70. Tonnelat, M.A.: La théorie du champ unifié d’Einstein et quelques-uns de ses développements. Gauthier-Villars, Paris (1955)

    MATH  Google Scholar 

  71. Trautman, A.: On the structure of the Einstein–Cartan equations. Symp. Math. 12, 139–162 (1973)

    MathSciNet  Google Scholar 

  72. Trautman, A.: Einstein–Cartan theory. In: Francoise, J.-P. et al. (eds.) Encyclopedia of Mathematical Physics, pp. 189–195. Elsevier, Oxford (2006). arXiv.org/gr-qc/0606062

    Google Scholar 

  73. Tresguerres, R., Mielke, E.W.: Gravitational Goldstone fields from affine gauge theory. Phys. Rev. D 62, 044004 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  74. Wielandt, E.: The superposition principle of waves not fulfilled under M.W. Evans’ O(3) hypothesis. Phys. Sc. 74, 539–540 (2006). arXiv. org/physics/0607262

    Article  MATH  ADS  Google Scholar 

  75. Wise, D.K.: MacDowell–Mansouri gravity and Cartan geometry. arXiv.org/gr-qc/0611154

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich W. Hehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hehl, F.W. An Assessment of Evans’ Unified Field Theory I. Found Phys 38, 7–37 (2008). https://doi.org/10.1007/s10701-007-9190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9190-0

Keywords

Navigation