Advertisement

Foundations of Physics

, Volume 37, Issue 11, pp 1563–1611 | Cite as

Quantum Mechanics: Myths and Facts

  • Hrvoje Nikolić
Article

Abstract

A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.

Keywords

Quantum mechanics Particle Field Reality Nonlocality Uncertainty relation Randomness Black-hole entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden variables”. I. Phys. Rev. 85(2), 166–179 (1952) CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden variables”. II. Phys. Rev. 85(2), 180–193 (1952) CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Tumulka, R.: Understanding Bohmian mechanics: a dialogue. Am. J. Phys. 72(9), 1220–1226 (2004) CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Passon, O.: How to teach quantum mechanics. Eur. J. Phys. 25(6), 765–769 (2004) CrossRefGoogle Scholar
  5. 5.
    Styer, D.F., et al.: Nine formulations of quantum mechanics. Am. J. Phys. 70(3), 288–297 (2002) CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Passon, O.: Why isn’t every physicist a Bohmian? quant-ph/0412119 Google Scholar
  7. 7.
    Pauli, W.: Handbuch der Physik. Springer, Berlin (1926) Google Scholar
  8. 8.
    Busch, P.: The time energy uncertainty relation, quant-ph/0105049 Google Scholar
  9. 9.
    Boström, K.: Quantizing time, quant-ph/0301049 Google Scholar
  10. 10.
    Aharonov, Y., Bohm, D.: Time in quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649–1658 (1961) MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    ’t Hooft, G.: Quantum gravity as a dissipative deterministic system. Class. Quantum Gravity 16, 3263–3279 (1999) MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    ’t Hooft, G.: Determinism in free bosons. Int. J. Theor. Phys. 42, 355–361 (2003) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rosen, N.: The relation between classical and quantum mechanics. Am. J. Phys. 32(8), 597–600 (1964) CrossRefADSGoogle Scholar
  14. 14.
    Rosen, N.: Mixed states in classical mechanics. Am. J. Phys. 33(2), 146–150 (1965) CrossRefADSGoogle Scholar
  15. 15.
    Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992) MATHCrossRefADSGoogle Scholar
  16. 16.
    Nikolić, H.: Classical mechanics without determinism. Found. Phys. Lett. 19, 553–566 (2006) CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987) Google Scholar
  18. 18.
    Mermin, N.D.: Bringing home the atomic world: quantum mysteries for anybody. Am. J. Phys. 49(10), 940–943 (1981) CrossRefADSGoogle Scholar
  19. 19.
    Laloë, F.: Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. Am. J. Phys. 69(6), 655–701 (2001) CrossRefADSGoogle Scholar
  20. 20.
    Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319–396 (2005) CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Greenberger, D.M., Horne, M., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69–72. Kluwer Academic, Dordrecht (1989) Google Scholar
  22. 22.
    Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58(8), 731–734 (1990) CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Jordan, T.F.: Quantum mysteries explored. Am. J. Phys. 62(10), 874–880 (1994) CrossRefADSGoogle Scholar
  24. 24.
    Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992) MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993) MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Berndl, K., Goldstein, S.: Comment on “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories”. Phys. Rev. Lett. 72, 780 (1994) MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Hardy, L.: Hardy replies. Phys. Rev. Lett. 72, 781 (1994) CrossRefADSGoogle Scholar
  28. 28.
    Schauer, D.L.: Comment on “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories”. Phys. Rev. Lett. 72, 782 (1994) MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Hardy, L.: Hardy replies. Phys. Rev. Lett. 72, 783 (1994) CrossRefADSGoogle Scholar
  30. 30.
    Goldstein, S.: Nonlocality without inequalities for almost all entangled states for two particles. Phys. Rev. Lett. 72, 1951 (1994) CrossRefADSGoogle Scholar
  31. 31.
    Mermin, N.D.: Quantum mysteries refined. Am. J. Phys. 62(10), 880–887 (1994) CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Zeilinger, A.: The message of the quantum. Nature 438(8), 743 (2005) CrossRefADSGoogle Scholar
  33. 33.
    Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678 (1996) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Smerlak, M., Rovelli, C.: Relational EPR. Found. Phys. 37, 427–445 (2007) MATHCrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Mermin, N.D.: What is quantum mechanics trying to tell us? Am. J. Phys. 66(9), 753–767 (1998) CrossRefADSGoogle Scholar
  36. 36.
    Medina, R.: Orthodox quantum mechanics free from paradoxes, quant-ph/0508014 Google Scholar
  37. 37.
    Cohen, D.: Lecture notes in quantum mechanics, quant-ph/0605180 Google Scholar
  38. 38.
    Daumer, M., Dürr, D., Goldstein, S., Zanghì, N.: Naive realism about operators, quant-ph/9601013 Google Scholar
  39. 39.
    Bilaniuk, O.M.P., Deshpande, V.K., Sudarshan, E.C.G.: “Meta” relativity. Am. J. Phys. 30(10), 718–723 (1962) CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Bilaniuk, O.M.P., Sudarshan, E.C.G.: Particles beyond the light barrier. Phys. Today 22(5), 43–51 (1969) CrossRefGoogle Scholar
  41. 41.
    Liberati, S., Sonego, S., Visser, M.: Faster-than-c signals, special relativity, and causality. Ann. Phys. 298, 167–185 (2002) MATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Nikolić, H.: Causal paradoxes: a conflict between relativity and the arrow of time. Found. Phys. Lett. 19, 259–267 (2006) CrossRefMathSciNetMATHGoogle Scholar
  43. 43.
    Berndl, K., Dürr, D., Goldstein, S., Zanghì, N.: Nonlocality, Lorentz invariance, and Bohmian quantum theory. Phys. Rev. A 53, 2062–2073 (1996) CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Dürr, D., Goldstein, S., Münch-Berndl, K., Zanghì, N.: Hypersurface Bohm-Dirac models. Phys. Rev. A 60, 2729–2736 (1999) CrossRefADSGoogle Scholar
  45. 45.
    Horton, G., Dewdney, C.: Relativistically invariant extension of the de Broglie-Bohm theory of quantum mechanics. J. Phys. A 35, 10117–10127 (2002) MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Horton, G., Dewdney, C.: A relativistically covariant version of Bohm’s quantum field theory for the scalar field. J. Phys. A 37, 11935–11944 (2004) MATHCrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Nikolić, H.: Relativistic quantum mechanics and the Bohmian interpretation. Found. Phys. Lett. 18, 549–561 (2005) CrossRefMathSciNetMATHGoogle Scholar
  48. 48.
    Nikolić, H.: Relativistic Bohmian interpretation of quantum mechanics, quant-ph/0512065, talk given at conference “On the Present Status of Quantum Mechanics”, Mali Lošinj, Croatia, 7–9 September 2005 Google Scholar
  49. 49.
    Nikolić, H.: Covariant canonical quantization of fields and Bohmian mechanics. Eur. Phys. J. C 42, 365–374 (2005) CrossRefADSGoogle Scholar
  50. 50.
    Nikolić, H.: Quantum determinism from quantum general covariance. Int. J. Mod. Phys. D 15, 2171–2176 (2006) CrossRefADSMATHGoogle Scholar
  51. 51.
    Nikolić, H.: Honorable Mention of the Gravity Research Foundation 2006 Essay Competition Google Scholar
  52. 52.
    Nikolić, H.: Covariant many-fingered time Bohmian interpretation of quantum field theory. Phys. Lett. A 348, 166–171 (2006) CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Nikolić, H.: Quantum nonlocality without hidden variables: an algorithmic approach, quant-ph/0703071 Google Scholar
  54. 54.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw–Hill, New York (1964) Google Scholar
  55. 55.
    Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21(3), 400–406 (1949) MATHCrossRefADSGoogle Scholar
  56. 56.
    Ghose, P., Home, D., Sinha Roy, M.N.: Relativistic quantum mechanics of bosons. Phys. Lett. A 183(4), 267–271 (1993) CrossRefADSMathSciNetGoogle Scholar
  57. 57.
    Gavrilov, S.P., Gitman, D.M.: Quantization of point-like particles and consistent relativistic quantum mechanics. Int. J. Mod. Phys. A 15(28), 4499–4538 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  58. 58.
    Nikolić, H.: Probability in relativistic quantum mechanics and foliation of spacetime, quant-ph/0602024 Google Scholar
  59. 59.
    Ryder, L.H.: Quantum Field Theory. Cambridge University Press, Cambridge (1984) Google Scholar
  60. 60.
    Zeh, H.D.: There is no “first” quantization. Phys. Lett. A 309, 329–334 (2003) MATHCrossRefADSMathSciNetGoogle Scholar
  61. 61.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields. McGraw–Hill, New York (1965) MATHGoogle Scholar
  62. 62.
    Cheng, T.P., Li, L.F.: Gauge Theory of Elementary Particle Physics. Oxford University Press, Oxford (1984) Google Scholar
  63. 63.
    Jaffe, R.L.: Casimir effect and the quantum vacuum. Phys. Rev. D 72, 021301 (2005) CrossRefADSGoogle Scholar
  64. 64.
    Schubert, C.: Perturbative quantum field theory in the string-inspired formalism. Phys. Rep. 355, 73–234 (2001) MATHCrossRefADSMathSciNetGoogle Scholar
  65. 65.
    Thorndike, A.: Using Feynman diagrams to solve the classical harmonic oscillator. Am. J. Phys. 68(2), 155–159 (2000) CrossRefADSMathSciNetGoogle Scholar
  66. 66.
    Penco, R., Mauro, D.: Perturbation theory via Feynman diagrams in classical mechanics, hep-th/0605061 Google Scholar
  67. 67.
    Creutz, M.: Quarks, Gluons and Lattices. Cambridge University Press, Cambridge (1983) Google Scholar
  68. 68.
    Davies, C.: Lattice QCD, hep-ph/0205181 Google Scholar
  69. 69.
    Sharpe, S.R.: Phenomenology from the lattice, hep-ph/9412243 Google Scholar
  70. 70.
    Carroll, S.M.: Lecture notes on general relativity, gr-qc/9712019 Google Scholar
  71. 71.
    Nelson, R.A.: Generalized Lorentz transformation for an accelerated, rotating frame of reference. J. Math. Phys. 28, 2379–2383 (1987) MATHCrossRefADSMathSciNetGoogle Scholar
  72. 72.
    Nelson, R.A.: J. Math. Phys. 35, 6224–6225 (1994), Erratum MATHCrossRefADSMathSciNetGoogle Scholar
  73. 73.
    Nikolić, H.: Relativistic contraction and related effects in noninertial frames. Phys. Rev. A 61, 032109 (2000) CrossRefADSGoogle Scholar
  74. 74.
    Nikolić, H.: Relativistic contraction of an accelerated rod. Am. J. Phys. 67(11), 1007–1012 (1999) CrossRefADSGoogle Scholar
  75. 75.
    Nikolić, H.: The role of acceleration and locality in the twin paradox. Found. Phys. Lett. 13, 595–601 (2000) CrossRefMathSciNetGoogle Scholar
  76. 76.
    Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976) CrossRefADSGoogle Scholar
  77. 77.
    Unruh, W.G., Wald, R.M.: What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29, 1047–1056 (1984) CrossRefADSGoogle Scholar
  78. 78.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, New York (1982) MATHGoogle Scholar
  79. 79.
    Rindler, W.: Kruskal space and the uniformly accelerated frame. Am. J. Phys. 34(12), 1174–1178 (1966) CrossRefADSGoogle Scholar
  80. 80.
    Nikolić, H.: Inappropriateness of the Rindler quantization. Mod. Phys. Lett. A 16, 579–581 (2001) CrossRefGoogle Scholar
  81. 81.
    Sriramkumar, L., Padmanabhan, T.: Probes of the vacuum structure of quantum fields in classical backgrounds. Int. J. Mod. Phys. D 11, 1–34 (2002) MATHCrossRefADSMathSciNetGoogle Scholar
  82. 82.
    Nikolić, H.: A general-covariant concept of particles in curved background. Phys. Lett. B 527, 119–124 (2002) CrossRefADSMathSciNetMATHGoogle Scholar
  83. 83.
    Nikolić, H.: The general-covariant and gauge-invariant theory of quantum particles in classical backgrounds. Int. J. Mod. Phys. D 12, 407–444 (2003) CrossRefADSMATHGoogle Scholar
  84. 84.
    Nikolić, H.: Generalizations of normal ordering and applications to quantization in classical backgrounds. Gen. Rel. Grav. 37, 297–311 (2005) CrossRefADSMATHGoogle Scholar
  85. 85.
    Davies, P.C.W.: Particles do not exist. In: Christensen, S.M. (ed.) Quantum Theory of Gravity, pp. 66–77. Adam Hilger Ltd, Bristol (1984) Google Scholar
  86. 86.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975) CrossRefADSMathSciNetGoogle Scholar
  87. 87.
    Brout, R., Massar, S., Parentani, R., Spindel, Ph.: A primer for black hole quantum physics. Phys. Rep. 260, 329–446 (1995) CrossRefADSMathSciNetGoogle Scholar
  88. 88.
    Jacobson, T.: Introduction to quantum fields in curved spacetime and the Hawking effect, gr-qc/0308048 Google Scholar
  89. 89.
    Padmanabhan, T.: Gravity and the thermodynamics of horizons. Phys. Rep. 406, 49–125 (2005) CrossRefADSMathSciNetGoogle Scholar
  90. 90.
    Srinivasan, K., Padmanabhan, T.: Doing it with mirrors: classical analogues for black hole radiation, gr-qc/9812087 Google Scholar
  91. 91.
    Nouri-Zonoz, M., Padmanabhan, T.: The classical essence of black hole radiation, gr-qc/9812088 Google Scholar
  92. 92.
    Padmanabhan, T.: Physical interpretation of quantum field theory in noninertial coordinate systems. Phys. Rev. Lett. 64, 2471–2474 (1990) MATHCrossRefADSMathSciNetGoogle Scholar
  93. 93.
    Belinski, V.A.: On the existence of black hole evaporation yet again. Phys. Lett. A 354, 249–257 (2006) CrossRefADSMathSciNetGoogle Scholar
  94. 94.
    Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951) MATHCrossRefADSMathSciNetGoogle Scholar
  95. 95.
    Manogue, C.A.: The Klein paradox and superradiance. Ann. Phys. 181, 261–283 (1988) CrossRefADSGoogle Scholar
  96. 96.
    Nikolić, H.: On particle production by classical backgrounds, hep-th/0103251 Google Scholar
  97. 97.
    Nikolić, H.: Physical stability of the QED vacuum, hep-ph/0105176 Google Scholar
  98. 98.
    Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004) CrossRefADSMathSciNetGoogle Scholar
  99. 99.
    Nikolić, H.: Bohmian particle trajectories in relativistic bosonic quantum field theory. Found. Phys. Lett. 17, 363–380 (2004) CrossRefMathSciNetMATHGoogle Scholar
  100. 100.
    Nikolić, H.: Bohmian particle trajectories in relativistic fermionic quantum field theory. Found. Phys. Lett. 18, 123–138 (2005) CrossRefMathSciNetMATHGoogle Scholar
  101. 101.
    Zwiebach, B.: A First Course in String Theory. Cambridge University Press, Cambridge (2004) MATHGoogle Scholar
  102. 102.
    Szabo, R.J.: BUSSTEPP lectures on string theory, hep-th/0207142 Google Scholar
  103. 103.
    Polchinski, J.: What is string theory? hep-th/9411028 Google Scholar
  104. 104.
    Nikolić, H.: Strings, world-sheet covariant quantization and Bohmian mechanics. Eur. Phys. J. C 47, 525–529 (2006) CrossRefADSGoogle Scholar
  105. 105.
    Nikolić, H.: Boson-fermion unification, superstrings, and Bohmian mechanics, hep-th/0702060 Google Scholar
  106. 106.
    Nikolić, H.: Strings, T-duality breaking, and nonlocality without the shortest distance. Eur. Phys. J. C 50, 431–434 (2007) CrossRefADSGoogle Scholar
  107. 107.
    Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973) CrossRefADSMathSciNetGoogle Scholar
  108. 108.
    Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973) CrossRefADSMathSciNetMATHGoogle Scholar
  109. 109.
    Hawking, S.W.: The nature of space and time, hep-th/9409195 Google Scholar
  110. 110.
    Townsend, P.K.: Black holes, gr-qc/9707012 Google Scholar
  111. 111.
    Visser, M.: Hawking radiation without black hole entropy. Phys. Rev. Lett. 80, 3436–3439 (1998) MATHCrossRefADSMathSciNetGoogle Scholar
  112. 112.
    Carlip, S.: Quantum gravity: A progress report. Rep. Prog. Phys. 64, 885–942 (2001) CrossRefADSMathSciNetGoogle Scholar
  113. 113.
    Alvarez, E.: Quantum gravity, gr-qc/0405107 Google Scholar
  114. 114.
    Rovelli, C.: Loop quantum gravity. Living Rev. Rel. 1, 1–75 (1998), gr-qc/9710008 MathSciNetGoogle Scholar
  115. 115.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004) MATHGoogle Scholar
  116. 116.
    Horowitz, G.T.: Quantum states of black holes, gr-qc/9704072 Google Scholar
  117. 117.
    Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002) CrossRefADSMathSciNetGoogle Scholar
  118. 118.
    Giddings, S.B.: Quantum mechanics of black holes, hep-th/9412138 Google Scholar
  119. 119.
    Strominger, A.: Les Houches lectures on black holes, hep-th/9501071 Google Scholar
  120. 120.
    Nikolić, H.: Black holes radiate but do not evaporate. Int. J. Mod. Phys. D 14, 2257–2261 (2005) CrossRefADSMATHGoogle Scholar
  121. 121.
    Nikolić, H.: Honorable Mention of the Gravity Research Foundation 2005 Essay Competition Google Scholar
  122. 122.
    Nikolić, H.: Cosmological constant, semiclassical gravity, and foundations of quantum mechanics, gr-qc/0611037 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Theoretical Physics DivisionRudjer Bošković InstituteZagrebCroatia

Personalised recommendations