Skip to main content
Log in

Effects, Observables, States, and Symmetries in Physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We show how effect algebras arise in physics and how they can be used to tie together the observables, states and symmetries employed in the study of physical systems. We introduce and study the unifying notion of an effect-observable-state-symmetry-system (EOSS-system) and give both classical and quantum-mechanical examples of EOSS-systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beran, L.: Orthomodular Lattices, an Algebraic Approach, Mathematics and its Applications, vol. 18. Reidel, Dordrecht (1985)

    Google Scholar 

  2. Bunce, L., Wright, J.D.M.: The Mackey-Gleason problem. Bull. A.M.S. 26(2), 288–293 (1992)

    MATH  MathSciNet  Google Scholar 

  3. Busch, P.: Quantum states and generalized observables: a simple proof of Gleason’s theorem. Phys. Rev. Lett. 91(12), 120403 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Lecture Notes in Physics, vol. 2. Springer, Berlin/Heidelberg/New York (1991), ISBN 0-387-54334-1

    Google Scholar 

  5. Dalla Chiara, M.L., Giuntini, R., Greechie, R.J.: Reasoning in Quantum Theory. Trends in Logic, vol. 22. Kluwer, Dordrecht/Boston/London (2004), ISBN 1-4020-1978-5

    MATH  Google Scholar 

  6. Dvurečenskij, A.: Gleason’s Theorem and its Applications. Kluwer, Dordrecht/Boston/London (1993), ISBN 0-7923-1990-7

    Google Scholar 

  7. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic, Dordrecht (2000), Ister Science, Bratislava (2000), ISBN 0-7923-6471-6

    Google Scholar 

  8. Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras I. Basic properties. Int. J. Theor. Phys. 40(3), 685–701 (2001)

    Article  Google Scholar 

  9. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24(10), 1331–1352 (1994)

    Article  MathSciNet  Google Scholar 

  10. Foulis, D.J.: Sequential probability models and transition probabilities. Atti. Sem. Mat. Fis. Univ. Modena 50(1), 225–249 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Foulis, D.J., Greechie, R.J.: Quantum logic and partially ordered abelian groups. In: Engesser, K., Gabbay, D., Lehmann, D. (eds.) Handbook of Quantum Logic, vol. II (2007, to appear)

  12. Foulis, D.J., Wilce, A.: Free extensions of group actions, induced representations, and the foundations of physics. In: Coecke, B., Moore, D., Wilce, A. (eds.) Current Research in Operational Quantum Logic, pp. 139–165. Kluwer Academic, Dordrecht/Boston/London (2000), ISBN 0-7923-6258-6

    Google Scholar 

  13. Foulis, D.J., Greechie, R.J., Bennett, M.K.: Sums and products of interval algebras. Int. J. Theor. Phys. 33(11), 2119–2136 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fuchs, C.A.: Quantum mechanics as quantum information (and only a little more). Preprint, arXiv.org/quant-ph/0205039v1 (2002)

  15. Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. A.M.S. Mathematical Surveys and Monographs, vol. 20. American Mathematical Society, Providence (1986), ISBN 0-8218-1520-2

    MATH  Google Scholar 

  16. Gudder, S.P.: Connectives and fuzziness for classical effects. Fuzzy Sets Syst. 106(2), 247–254 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Halmos, P.R.: Lectures on Boolean algebras. Van Nostrand Mathematical Studies, vol 1. Van Nostrand, Princeton (1963)

    MATH  Google Scholar 

  18. Hardegree, G.M., Frazer, P.J.: Charting the labyrinth of quantum logics: a progress report. In: Current Issues in Quantum Logic (Erice, 1979), Ettore Majorana International Science Series: Physical Sciences, vol. 8, pp. 53–76. Plenum, New York–London (1981), ISBN 0-306-40652-7

    Google Scholar 

  19. Kadison, R.V.: Isometries of operator algebras. Ann. Math. 54(2), 325–338 (1951)

    Article  MathSciNet  Google Scholar 

  20. Kalmbach, G.: Orthomodular Lattices. Academic Press, London/New York (1983), ISBN 0-12-394580-1

    MATH  Google Scholar 

  21. Khinchin, A.Y.: Mathematical Foundations of Statistical Mechanics. Dover, New York (1949), ISBN 0-48-660147-1

    MATH  Google Scholar 

  22. Kolmogorov, A.N.: Foundations of the Theory of Probability. Chelsea, New York (1950), English translation of Grundbegriffe der Wahrscheinlichkeitsrechnung

    Google Scholar 

  23. Ludwig, G.: Die Grundlagen der Quantenmechanik. Springer, Berlin–Heidelberg–New York (1954), English translation by Hein, C.A. of Foundations of Quantum Mechanics, vols. I, II. Springer, New York (1983/85), ISBN-387-11683-4, 0-387-13009-8

    MATH  Google Scholar 

  24. Mackey, G.W.: The Mathematical Foundations of Quantum Mechanics. Benjamin, New York/Amsterdam (1963)

    MATH  Google Scholar 

  25. Stone, M.H.: The theory of representations for a Boolean algebra. Trans. Am. Math. Soc. 40, 37–111 (1936)

    Article  MATH  Google Scholar 

  26. Vigier, J.P.: Etude sur les suites infinies d’opérateurs hermitiens. Thèse, Geneva (1946)

    MATH  Google Scholar 

  27. Wilce, A.: Test spaces. In Engesser, K., Gabbay, D., Lehmann, D. (eds.) Handbook of Quantum Logic, vol. I (2007, to appear)

  28. Wright, R.: The structure of projection-valued states: a generalization of Wigner’s theorem. Int. J. Theor. Phys. 16(8), 567–573 (1977)

    Article  MATH  Google Scholar 

  29. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Foulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foulis, D.J. Effects, Observables, States, and Symmetries in Physics. Found Phys 37, 1421–1446 (2007). https://doi.org/10.1007/s10701-007-9170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9170-4

Keywords

Navigation