Skip to main content
Log in

Insights into the Second Law of Thermodynamics from Anisotropic Gas-Surface Interactions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Thermodynamic implications of anisotropic gas-surface interactions in a closed molecular flow cavity are examined. Anisotropy at the microscopic scale, such as might be caused by reduced-dimensionality surfaces, is shown to lead to reversibility at the macroscopic scale. The possibility of a self-sustaining nonequilibrium stationary state induced by surface anisotropy is demonstrated that simultaneously satisfies flux balance, conservation of momentum, and conservation of energy. Conversely, it is also shown that the second law of thermodynamics prohibits anisotropic gas-surface interactions in “equilibrium”, even for reduced dimensionality surfaces. This is particularly startling because reduced dimensionality surfaces are known to exhibit a plethora of anisotropic properties. That gas-surface interactions would be excluded from these anisotropic properties is completely counterintuitive from a causality perspective. These results provide intriguing insights into the second law of thermodynamics and its relation to gas-surface interaction physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinslow, M.: AIAA J. 14, 1358 (1976)

    Article  ADS  Google Scholar 

  2. Ertl, G.: Pure Appl. Chem. 61, 1001 (1989)

    Google Scholar 

  3. Cerignani, C., Lampis, M.: AIAA J. 35, 1000 (1997)

    ADS  Google Scholar 

  4. Stampfi, C., Kreuzer, H., Payne, S., Pfnur, H., Scheffler, M.: Phys. Rev. Lett. 83, 2993 (1999)

    Article  ADS  Google Scholar 

  5. Cercignani, C.: Rarefied Gas Dynamics. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Christian Ottinger, H.: Beyond Equilibrium Thermodynamics. Wiley, New York (2005)

    Google Scholar 

  7. Siewert, C.E., Sharipov, F.: Phys. Fluids 14, 4123 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Fan, G., Manson, J.: Phys. Rev. B 72, 085413 (2005)

    Article  ADS  Google Scholar 

  9. Horodenski, A.: J. Vac. Sci. Technol. A 3, 39 (1985)

    Article  ADS  Google Scholar 

  10. Sheehan, D.P.: Phys. Rev. E 57, 6660 (1998)

    Article  ADS  Google Scholar 

  11. Iijima, S.: Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  12. Widdra, W., Trischberger, P., Frieb, W., Menzel, D., Payne, S., Kreuzer, H.: Phys. Rev. B 57, 4111 (1998)

    Article  ADS  Google Scholar 

  13. Dresselhaus, M., Eklund, P.: Adv. Phys. 49, 705 (2000)

    Article  ADS  Google Scholar 

  14. Yeom, H.: J. Electron. Spectrosc. Relat. Phenom. 114, 283 (2001)

    Article  Google Scholar 

  15. Plummer, E., Ismail, R., Matzdorf, R., Melechko, A., Pierce, J., Zhang, J.: Surf. Sci. 500, 1 (2002)

    Article  ADS  Google Scholar 

  16. Hueso, L., Mathur, N.: Nature 427, 301 (2004)

    Article  ADS  Google Scholar 

  17. Kuscer, I.: Surf. Sci. 25, 225 (1971)

    Article  ADS  Google Scholar 

  18. Horodenski, A.: Phys. Lett. A 122, 295 (1987)

    Article  ADS  Google Scholar 

  19. Wenaas, E.: J. Chem. Phys. 54, 376 (1971)

    Article  ADS  Google Scholar 

  20. Rowlinson, J.: Mol. Phys. 103, 2821 (2005)

    Article  ADS  Google Scholar 

  21. Dahlberg, E.: J. Phys. A 6, 1800 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  22. Blatt, J., Opie, A.: J. Phys. A 7, L113 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  23. Knudsen, M.: Ann. Phys. 48, 1113 (1915)

    Google Scholar 

  24. Hobson, J., Salzman, D.: J. Vac. Sci. Technol. A 18, 1758 (2000)

    Article  ADS  Google Scholar 

  25. Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., Maruyama, S.: Chem. Phys. Lett. 385, 298 (2004)

    Article  ADS  Google Scholar 

  26. Hone, J., Batlogg, B., Benes, Z., Johnson, A., Fischer, J.: Science 289, 1730 (2000)

    Article  ADS  Google Scholar 

  27. Sauvajol, J., Anglaret, E., Rols, S., Alvarez, L.: Carbon 40, 1697 (2002)

    Article  Google Scholar 

  28. Jiang, J., Dong, J., Xing, D.: Phys. Rev. B 65, 245418 (2002)

    Article  ADS  Google Scholar 

  29. Alvarez, L., Righi, A., Guillard, T., Rols, S., Anglaret, E., Laplaz, D., Sauvajol, J.: Chem. Phys. Lett. 316, 186 (2000)

    Article  ADS  Google Scholar 

  30. Leuthausser, U.: Phys. Rev. B 36, 4672 (1987)

    Article  ADS  Google Scholar 

  31. Comsa, G.: J. Chem. Phys. 48, 3235 (1968)

    Article  ADS  Google Scholar 

  32. Comsa, G., David, R.: Surf. Sci. Rep. 5, 145 (1985)

    Article  ADS  Google Scholar 

  33. Scully, M.: Phys. Rev. Lett. 87, 220601 (2001)

    Article  ADS  Google Scholar 

  34. Gaede, W.: Ann. Phys. 41, 289 (1913)

    Article  Google Scholar 

  35. Clausing, P.: Ann. Phys. 4, 533 (1930)

    Article  Google Scholar 

  36. Prigogine, I.: Physica A 263, 528 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  37. Gallavotti, G.: J. Stat. Phys. 78, 1571 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  38. Lebowitz, J.: Physica A 263, 516 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lebowitz, J.: Rev. Mod. Phys. 71, S346 (1999)

    Article  Google Scholar 

  40. Gemmer, J., Otte, A., Mahler, G.: Phys. Rev. Lett. 86, 1927 (2001)

    Article  ADS  Google Scholar 

  41. Nikulov, A., Sheehan, D.: Entropy 6, 1 (2004)

    Article  ADS  Google Scholar 

  42. Gallavotti, G., Cohen, E.: Phys. Rev. E 69, 035104 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. Evans, J., Cohen, E., Morriss, G.: Phys. Rev. Lett. 71, 2401 (1993)

    Article  MATH  ADS  Google Scholar 

  44. Mittag, E., Evans, D.: Phys. Rev. E 67, 026113 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  45. Wang, G., Sevick, E., Mittag, E., Searles, D., Evans, D.: Phys. Rev. Lett. 89, 050601 (2002)

    Article  ADS  Google Scholar 

  46. Carberry, D., Reid, J., Wang, G., Sevick, E., Searles, D., Evans, D.: Phys. Rev. Lett. 92, 140601 (2004)

    Article  ADS  Google Scholar 

  47. Bustamante, C., Liphardt, J., Ritort, F.: Phys. Today 58, 43 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Miller.

Additional information

Sandia National Laboratories is the author’s employer, but is not officially affiliated with this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, S.L. Insights into the Second Law of Thermodynamics from Anisotropic Gas-Surface Interactions. Found Phys 37, 1660–1684 (2007). https://doi.org/10.1007/s10701-007-9167-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9167-z

Keywords

Navigation