Advertisement

Foundations of Physics

, Volume 37, Issue 12, pp 1744–1766 | Cite as

Entropy, Its Language, and Interpretation

  • Harvey S. Leff
Article

Abstract

The language of entropy is examined for consistency with its mathematics and physics, and for its efficacy as a guide to what entropy means. Do common descriptors such as disorder, missing information, and multiplicity help or hinder understanding? Can the language of entropy be helpful in cases where entropy is not well defined? We argue in favor of the descriptor spreading, which entails space, time, and energy in a fundamental way. This includes spreading of energy spatially during processes and temporal spreading over accessible microstates states in thermodynamic equilibrium. Various examples illustrate the value of the spreading metaphor. To provide further support for this metaphor’s utility, it is shown how a set of reasonable spreading properties can be used to derive the entropy function. A main conclusion is that it is appropriate to view entropy’s symbol S as shorthand for spreading.

Keywords

Entropy Metaphor Energy Spreading Find Phys Spatial Spreading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Čápek, V., Sheehan, D.P.: Challenges to the Second Law of Thermodynamics—Theory and Experiment. Springer, Dordrecht (2005) MATHGoogle Scholar
  2. 2.
    Boltzmann, L.: Lectures on Gas Theory—Part I, pp. 441–443. Barth, Leipzig (1896), reprinted by University of California Press, Berkeley (1964) Google Scholar
  3. 3.
    Burgers, J.M.: Entropy and disorder. Br. J. Philos. Sci. 5, 70–71 (1954) CrossRefGoogle Scholar
  4. 4.
    Styer, D.F.: Insight into entropy. Am. J. Phys. 68, 1090–1096 (2000) CrossRefADSGoogle Scholar
  5. 5.
    Darrow, K.K.: The concept of entropy. Am. J. Phys. 12, 183–196 (1944) CrossRefADSGoogle Scholar
  6. 6.
    Bohren, C.F., Albrecht, B.A.: Atmospheric Thermodynamics, pp. 150–152. Oxford University Press, Oxford (1998) Google Scholar
  7. 7.
    Dingle, H.: Bull. Inst. Phys. 10, 218 (1959) Google Scholar
  8. 8.
    Wright, P.G.: Entropy and disorder. Contemp. Phys. 11, 581–588 (1970) CrossRefADSGoogle Scholar
  9. 9.
    Lambert, F.L.: Disorder—a cracked crutch for supporting entropy discussions. J. Chem. Ed. 79, 187–192 (2002), revised web version: http://www.entropysite.com/cracked_crutch.html. See also Lambert’s website, http://www.entropysite.com for related discussions Google Scholar
  10. 10.
    Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol. 1, p. 418. Constable, London (1906), reprinted by Dover, New York (1961) Google Scholar
  11. 11.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Baierlein, R.: Teaching the approach to thermodynamic equilibrium: some pictures that help. Am. J. Phys. 46, 1042–1045 (1978) CrossRefADSGoogle Scholar
  13. 13.
    Swanson, R.M.: Entropy measures amount of choice. J. Chem. Ed. 67, 206–208 (1990) CrossRefGoogle Scholar
  14. 14.
    Brissaud, J.B.: The meanings of entropy. Entropy 7, 68–96 (2005) MathSciNetCrossRefMATHADSGoogle Scholar
  15. 15.
    Clausius, R.: On the application of the theorem of the equivalence of transformations to the internal work of a mass of matter. Philos. Mag. 24, 81–97 (1862), Reprinted in Kestin, J. (ed.) The Second Law of Thermodynamics. Dowden, Hutchinson & Ross, Stroudsberg (1976) Google Scholar
  16. 16.
    Klein, M.J.: Gibbs on Clausius. Hist. Stud. Phys. Sci. 1, 127–149 (1969) Google Scholar
  17. 17.
    Denbigh, K.G.: The many faces of irreversibility. Br. J. Philos. Sci. 40, 501–518 (1989) CrossRefGoogle Scholar
  18. 18.
    Denbigh, K.G.: The Principles of Chemical Equilibrium. Cambridge University Press, Cambridge (1961), Sect. 1.7 Google Scholar
  19. 19.
    Leff, H.S.: Thermodynamic entropy: the spreading and sharing of energy. Am. J. Phys. 64, 1261–1271 (1996) CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Lambert, F.L.: Entropy is simple, qualitatively. J. Chem. Ed. 79, 1241–1246 (2002), revised web version: http://www.entropysite.com/entropy_is_simple/index.html Google Scholar
  21. 21.
    Gross, D.H.E.: Microcanonical Thermodynamics: Phase Transitions in ‘Small’ Systems. World Scientific, Singapore (2001) Google Scholar
  22. 22.
    Leff, H.S.: What if entropy were dimensionless? Am. J. Phys. 67, 1114–1122 (1999) CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Falk, H.: Physica 29, 1114 (1963) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Baierlein, R.: Forces, uncertainty, and the Gibbs entropy. Am. J. Phys. 36, 625–629 (1968) CrossRefADSGoogle Scholar
  25. 25.
    Leff, H.S.: Entropy differences between ideal and nonideal systems. Am. J. Phys. 37, 548–553 (1969) CrossRefADSGoogle Scholar
  26. 26.
    Bruch, L.W., Schick, M., Siddon, R.L.: Limitation on the quantum-mechanical extension of Baierlein’s entropy theorem. Am. J. Phys. 44, 1007–1008 (1976) CrossRefADSGoogle Scholar
  27. 27.
    Leff, H.S.: Teaching the photon gas in introductory physics. Am. J. Phys. 70, 792–797 (2002) CrossRefADSGoogle Scholar
  28. 28.
    Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995) CrossRefADSGoogle Scholar
  29. 29.
    Pathria, R.K.: Statistical Mechanics, 2nd edn. Butterworth–Heinemann, Oxford (1996), Chaps. 7, 8 MATHGoogle Scholar
  30. 30.
    Goussard, J., Roulet, B.: Free expansion for real gases. Am. J. Phys. 61, 845–848 (1993) CrossRefADSGoogle Scholar
  31. 31.
    Lesk, A.M.: Entropy changes in isothermal expansions of real gases. Am. J. Phys. 42, 1030–1033 (1974) CrossRefADSGoogle Scholar
  32. 32.
    Leff, H.S.: Entropy changes in real gases and liquids. Am. J. Phys. 43, 1098–1100 (1975) CrossRefADSGoogle Scholar
  33. 33.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Szilard, L.: On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Z. Phys. 53, 840–856 (1929) CrossRefADSGoogle Scholar
  35. 35.
    Feld, B.T., Weiss Szilard, G.: The Collected Works of Leo Szilard: Scientific Papers. pp. 103–129. MIT Press, Cambridge (1972), English translation is by A. Rapoport and M. Knoller Google Scholar
  36. 36.
    Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement, pp. 539–548. Princeton University Press, Princeton (1983) Google Scholar
  37. 37.
    Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. Institute of Physics, Bristol (2003), now distributed by Taylor & Francis Google Scholar
  38. 38.
    Penrose, O.: Foundations of Statistical Mechanics, pp. 221–238. Pergamon, Oxford (1970) MATHGoogle Scholar
  39. 39.
    Bennett, C.H.: The thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905–940 (1982), reprinted in Ref. [37] CrossRefGoogle Scholar
  40. 40.
    Zurek, W.H.: Algorithmic randomness and physical entropy. Phys. Rev. 40, 4731–4751 (1989) CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Earman, J., Norton, J.D.: Exorcist XIV: the wrath of Maxwell’s demon, part I: from Maxwell to Szilard. Studies Hist. Philos. Mod. Phys. 29, 435–471 (1998) CrossRefMathSciNetGoogle Scholar
  42. 42.
    Earman, J., Norton, J.D.: Exorcist XIV: the wrath of Maxwell’s demon, part II: from Szilard to Landauer and beyond. Studies Hist. Philos. Mod. Phys. 30, 1–40 (1999) CrossRefMathSciNetGoogle Scholar
  43. 43.
    Allahverdyan, A.E., Nieuwenhuizen, T.M.: Breakdown of the Landauer bound for information erasure in the quantum regime. Phys. Rev. E 64, 0561171–0561179 (2001) CrossRefGoogle Scholar
  44. 44.
    Allahverdyan, A.E., Nieuwenhuizen, T.M.: Testing the violation of the Clausius inequality in nanoscale electric circuits. Phys. Rev. B 66, 1153091–1153095 (2002) CrossRefGoogle Scholar
  45. 45.
    Allahverdyan, A.E., Balian, R., Nieuwenhuizen, T.M.: Thomson’s formulation of the second law: an exact theorem and limits of its validity. In: Sheehan, D.P. (ed.) Quantum Limits to the Second Law. AIP Conference Proceedings, vol. 643. American Institute of Physics, New York (2002) Google Scholar
  46. 46.
    Allahverdyan, A.E., Nieuwenhuizen, T.M.: Unmasking Maxwell’s demon. In: Sheehan, D.P. (ed.) Quantum Limits to the Second Law. AIP Conference Proceedings, vol. 643. American Institute of Physics, New York (2002) Google Scholar
  47. 47.
    Nieuwenhuizen, T.M., Allahverdyan, A.E.: Quantum Brownian motion and its conflict with the second law. In: Sheehan, D.P. (ed.) Quantum Limits to the Second Law. AIP Conference Proceedings, vol. 643. American Institute of Physics, New York (2002) Google Scholar
  48. 48.
    Schneider, E.D., Sagan, D.: Into the Cool: Energy Flow, Thermodynamics, and Life. University of Chicago Press, Chicago (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsCalifornia State Polytechnic UniversityPomonaUSA

Personalised recommendations