Skip to main content
Log in

Vacuum Radiation, Entropy, and Molecular Chaos

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Vacuum radiation causes a particle to make a random walk about its dynamical trajectory. In this random walk the root mean square change in spatial coordinate is proportional to t 1/2, and the fractional changes in momentum and energy are proportional to t −1/2, where t is time. Thus the exchange of energy and momentum between a particle and the vacuum tends to zero over time. At the end of a mean free path the fractional change in momentum of a particle in a gas is very small. However, at the end of the mean free path each particle undergoes an interaction that magnifies the preceding change, and the net result is that the momentum distribution of the particles in a gas is randomized in a few collision times. In this way the random action of vacuum radiation and its subsequent magnification by molecular interaction produces entropy increase. This process justifies the assumption of molecular chaos used in the Boltzmann transport equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeh, H.-D.: The Physical Basis of the Direction of Time. Springer, New York (1989)

    Google Scholar 

  2. Kondepudi, D., Prigogine, I.: Modern Thermodynamics. Wiley, New York (1998)

    MATH  Google Scholar 

  3. Prigogine, I.: From Being to Becoming. Freeman, New York (1980)

    Google Scholar 

  4. Zurek, W.H., Paz, J.P.: Phys. Rev. Lett. 72, 2508 (1994)

    Article  ADS  Google Scholar 

  5. Milonni, P.W.: The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic Press, San Diego (1994)

    Google Scholar 

  6. Puthoff, H.E.: Phys. Rev. A 40, 4857 (1989)

    Article  ADS  Google Scholar 

  7. de la Peña, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer, Dordrecht (1996)

    Google Scholar 

  8. Huang, K.: Statistical Mechanics. Wiley, New York (1963)

    Google Scholar 

  9. Jammer, M.: The Philosophy of Quantum Mechanics. Wiley, New York (1974)

    Google Scholar 

  10. Kochen, S., Specker, E.P.: J. Math. Mech. 17, 59 (1967)

    MATH  MathSciNet  Google Scholar 

  11. Mermin, N.D.: Phys. Rev. Lett. 65, 3373 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Rueda, A.: Found. Phys. Lett. 6, 75 (1993)

    Article  MathSciNet  Google Scholar 

  13. Rueda, A.: Found. Phys. Lett. 6, 139 (1993)

    Article  MathSciNet  Google Scholar 

  14. Haken, H.: Synergetics. Springer, New York (1983)

    Google Scholar 

  15. Burns, J.E.: Found. Phys. 28, 1191 (1998)

    Article  MathSciNet  Google Scholar 

  16. Chebotarev, L.V.: The de Broglie–Bohm–Vigier approach in quantum mechanics. In: Jeffers, S., Lehnert, B., Abramson, N., Chebotarev, L. (eds.) Jean-Pierre Vigier and the Stochastic Interpretation of Quantum Mechanics, pp. 1–17. Apeiron, Montreal (2000)

    Google Scholar 

  17. Alder, B.: Liquid structure. In: Lerner, R.G., Trigg, G.L. (eds.) Encyclopedia of Physics, 2nd edn., pp. 647–650. VCH, New York (1991)

    Google Scholar 

  18. Čápek, V., Sheehan, D.P.: Challenges to the Second Law of Thermodynamics: Theory and Experiment. Springer, Dordrecht (2005)

    Google Scholar 

  19. Peebles, P.J.E.: Quantum Mechanics. Princeton University Press, Princeton (1992)

    Google Scholar 

  20. Unruh, W.G., Zurek, W.H.: Phys. Rev. D 40, 1071 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  21. Santos, E.: Phys. Lett. A 188, 198 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Smith, P.: Explaining Chaos. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  23. Dorfman, J.R., Goddard, P., Yeomans, J., Dorfman, R.: An Introduction to Chaos in Nonequilibrium Statistical Mechanics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  24. Fleischhacker, W., Schönfeld, T. (eds.): Pioneering Ideas for the Physical and Chemical Sciences: Josef Loschmidt’s Contributions. Plenum, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean E. Burns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, J.E. Vacuum Radiation, Entropy, and Molecular Chaos. Found Phys 37, 1727–1737 (2007). https://doi.org/10.1007/s10701-007-9161-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-007-9161-5

Keywords

Navigation