Advertisement

Foundations of Physics

, Volume 37, Issue 12, pp 1685–1706 | Cite as

Speed-Dependent Weighting of the Maxwellian Distribution in Rarefied Gases: A Second-Law Paradox?

  • Jack Denur
Article

Abstract

We show that the velocity distribution in rarefied (i.e., Knudsen) gases is spontaneously weighted in favor of small speeds away from the Maxwellian distribution corresponding to the temperature of the container walls—despite thermodynamic equilibrium with the walls. The consequent paradox concerning the second law of thermodynamics is discussed.

Keywords

Second law of thermodynamics Entropy Maxwellian distribution Temperature Rarefaction Knudsen gas Classical limit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baierlein, R.: Thermal Physics. Cambridge University Press, Cambridge (1999) Google Scholar
  2. 2.
    Baierlein, R.: Atoms and Information Theory. Freeman, San Francisco (1971) Google Scholar
  3. 3.
    Gurarie, Y.: The equivalence between the canonical and microcanonical distributions when applied to large systems. Am. J. Phys. 75, 747–751 (2007) CrossRefADSGoogle Scholar
  4. 4.
    Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw–Hill, New York (1965) Google Scholar
  5. 5.
    Chambers, A.: Modern Vacuum Physics. Chapman & Hall/CRC, Boca Raton (2005) Google Scholar
  6. 6.
    Knudsen, M.: The Kinetic Theory of Gases, 3rd edn. Methuen, London (1950) Google Scholar
  7. 7.
    Jitschin, W., Reich, G.: Molecular velocity distribution function at large Knudsen numbers. J. Vac. Sci. Technol. A 9, 2752–2756 (1991) ADSGoogle Scholar
  8. 8.
    Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley, New York (1977) Google Scholar
  9. 9.
    Kennard, E.H.: Kinetic Theory of Gases. McGraw–Hill, New York (1938) Google Scholar
  10. 10.
    Tolman, R.C.: Statistical Mechanics with Applications to Physics and Chemistry. The Chemical Catalog Company, New York (1927) (authorized facsimile by University Microfilms International. Ann Arbor (1979)) MATHGoogle Scholar
  11. 11.
    Jeans, J.H.: The Dynamical Theory of Gases, 4th edn. Cambridge University Press, London (1925) (unabridged republication by Dover, New York (1954)) Google Scholar
  12. 12.
    Pauli, W.: Thermodynamics and the Kinetic Theory of Gases. The MIT Press, Cambridge (1973) (unabridged republication by Dover, Mineola (2000)) Google Scholar
  13. 13.
    Denur, J.: Time evolution of a modified Feynman ratchet with velocity-dependent fluctuations and the second law of thermodynamics. http://www.ipmt-hpm.ac.ru/SecondLaw (2007, revised version in preparation)
  14. 14.
    Graeff, R.W.: Measuring the Temperature Distribution in Gas Columns. In: Sheehan, D.P. (ed.) First International Conference on Quantum Limits to the Second Law. AIP Conference Proceedings, vol. 643, pp. 225–230. AIP, Melville (2002) Google Scholar
  15. 15.
    Čápek, V., Sheehan, D.P. Challenges to the Second Law of Thermodynamics: Theory and Experiment, The Fundamental Theories of Physics Book Series, vol. 146. Springer, Dordrecht (2005) MATHGoogle Scholar
  16. 16.
    Trupp, A.: Second law violations by means of a stratification of temperature due to force fields. In: Sheehan, D.P. (ed.) First International Conference on Quantum Limits to the Second Law. AIP Conference Proceedings, vol. 643, pp. 231–236 Google Scholar
  17. 17.
    Sheehan, D.P., Glick, J., Duncan, T., Langton, J.A., Gagliardi, M.J., Tobe, R.: Phase space portraits of an unresolved gravitational Maxwell demon. Found. Phys. 32, 441–462 (2002) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Sheehan, D.P., Glick, J., Duncan, T., Langton, J.A., Gagliardi, M.J., Tobe, R.: Phase space analysis of a gravitationally-induced, steady-state nonequilibrium. Phys. Scr. 65, 430–437 (2002) CrossRefADSGoogle Scholar
  19. 19.
    Wheeler, J.C.: Resolution of a classical gravitational second-law paradox. Found. Phys. 34, 1029–1062 (2004) MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Čápek, V., Sheehan, D.P.: Quantum mechanical model of a plasma system: a challenge to the second law of thermodynamics. Physica A 304, 461–479 (2002) CrossRefADSMathSciNetMATHGoogle Scholar
  21. 21.
    Sheehan, D.P., Wright, J.A., Putnam, A.R., Perttu, E.K.: Intrinsically biased, resonant NEMS-MEMS oscillator and the second law of thermodynamics. Physica E 29, 87–99 (2005) CrossRefADSGoogle Scholar
  22. 22.
    Sheehan, D.P., Gross, D.H.E.: Extensivity and the thermodynamic limit: why size really does matter. Physica A 370, 461–482 (2006) CrossRefADSGoogle Scholar
  23. 23.
    Sheehan, D.P.: Retrocausation and the Thermodynamic Arrow of Time. In: Sheehan, D.P. (ed.) Frontiers of Time. AIP Conference Proceedings, vol. 863, pp. 89–104. AIP, Melville (2006) Google Scholar
  24. 24.
    McFee, R.: Self-rectification in diodes and the second law of thermodynamics. Am. J. Phys. 39, 814–820 Google Scholar
  25. 25.
    McFee, R.: Fluctuations in a non-Maxwellian gas. Am. J. Phys. 52, 1033–1037 (1984) CrossRefADSGoogle Scholar
  26. 26.
    McFee, R.: Gas with a non-Maxwellian velocity distribution. Phys. Rev. A 27, 2233–2236 (1983) CrossRefADSGoogle Scholar
  27. 27.
    Holt, E.H., Haskell, R.E.: Foundations of Plasma Dynamics. Macmillan, New York (1965) Google Scholar
  28. 28.
    Beck, C.: Dynamical foundations of nonextensive statistical mechanics. Phys. Rev. Lett. 87, 180601–1-4 (2001) ADSMathSciNetGoogle Scholar
  29. 29.
    Beck, C.: Superstatistics: Recent developments and applications. arXiv:cond-mat/0502306 v1 (2005) Google Scholar
  30. 30.
    Denur, J.: Velocity-dependent fluctuations: breaking the randomness of Brownian motion. Phys. Rev. A 40, 5390–5399 (1989) CrossRefADSGoogle Scholar
  31. 31.
    Denur, J.: Velocity-dependent fluctuations: breaking the randomness of Brownian motion. Phys. Rev. A 41, 3390 (1990), Erratum CrossRefADSGoogle Scholar
  32. 32.
    Szczepański, J., Wajnryb, E.: Long-time behavior of the one-particle Knudsen gas in a convex domain. Phys. Rev. A 44, 3615–3621 (1991) CrossRefADSGoogle Scholar
  33. 33.
    Zaslavsky, G.M.: Chaotic dynamics and the origin of statistical laws. Phys. Today 52(8), 39–45 (1999) Google Scholar
  34. 34.
    Miller, S.L.: Insights into the second law of thermodynamics from anisotropic gas-surface interactions (this volume) Google Scholar
  35. 35.
    Sheehan, D.P.: A paradox involving the second law of thermodynamics. Phys. Plasmas 2, 1893–1898 (1995) CrossRefADSGoogle Scholar
  36. 36.
    Sheehan, D.P.: Minimum requirement for second law violation: a paradox revisited. Phys. Plasmas 5, 2469–2471 (1998) CrossRefADSGoogle Scholar
  37. 37.
    Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993) Google Scholar
  38. 38.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Definitive edn. Pearson/Addison–Wesley, San Francisco (2006) Google Scholar
  39. 39.
    Bohren, C.F., Clothiaux, E.E.: Fundamentals of Atmospheric Radiation. Wiley–VCH, Weinheim (2006) Google Scholar
  40. 40.
    Lide, R.R. (ed.): CRC Handbook of Chemistry and Physics 2007–2008, 88th edn. CRC Press/Taylor & Francis Group, Boca Raton (2008) Google Scholar
  41. 41.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983) (Wiley Professional Paperback Edition by John Wiley (1998)) Google Scholar
  42. 42.
    Van de Hulst, H.C.: Light Scattering by Small Particles. Wiley, New York (1954) (unabridged and corrected republication by Dover, New York (1981)) Google Scholar
  43. 43.
    Bohren, C.F., Nevitt, T.J.: Absorption by a sphere: a simple approximation. Appl. Opt. 22, 774–775 (1983) ADSCrossRefGoogle Scholar
  44. 44.
    Bohren, C.F., Albrecht, B.A.: Atmospheric Thermodynamics. Oxford University Press, New York (1998) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Electric & Gas Technology, Inc.GarlandUSA

Personalised recommendations